Home
Google Scholar
 Nothing psychological is strange to us
III Congreso Nacional de Psicología - Oviedo 2017
Universidad de Oviedo

 

Aviso Legal

SELECTED ARTICLE

Psicothema

ISSN Paper Edition: 0214-9915

1994 . Vol. 6 , nº 2 , pp. 297-310
Copyright © 2014     


Read Article View PDF        

  

PARAMETRIC VERSUS NON PARAMETRIC APPROACHES TO INDIVIDUAL DIFFERENCES SCALING

 

Alberto Maydeu-Olivares

University of Illinois

Latent trait models (LTMs) are one type of individual differences scaling models. Most commonly, these models use parametric functions to model the option response functions (ORFs) and latent trait distributions, although recently several nonparametric LTMs have also been proposed. In this paper, the strengths of each of these two approaches are discussed by comparing two models: Muthén's parametric LISCOMP model, and Levine's nonparametric MFS model. It was found that the MFS model is particularly suited for unidimensional scaling since it allows density estimation, it is more flexible at modeling the shape of the ORFs, and therefore may be more robust to mispecifications of the dimensionality of the data. The LISCOMP model, on the other hand, is particularly suited for multidimensional scaling, and for modeling the relationships between the scaling dimensions and external variables. Nonparametric models such as MFS are not easily generalized to multidimensional situations since they usually rely on smoothing constraints to reduce the estimation parameter space. These constraints are based on assumptions about the functional form of the ORFs and the latent trait densities, and it may be difficult to arrive at a set of constraints that will prove appropriate for different sampling schemes and dimensionality hypotheses.

Key words: IRT; item response theory.

Enfoques parametricos versus no parametricos para el escalamiento de diferencias individuales. Los modelos de rasgos latentes (MRLs) son un tipo de modelos de escalamiento de diferencias individuales. Habitualmente, estos modelos utilizan funciones paramétricas para modelar las funciones de respuesta a las opciones (FROs) y las distribuciones de los rasgos latentes, aunque recientemente varios MRLs no paramétricos han sido propuestos. En este artículo se comparan las ventajas de cada uno de estos dos enfoques mediante la comparación de dos modelos: el modelo paramétrico LISCOMP de Muthén, y el modelo no paramétrico MFS de Levine. El modelo MFS es particularmente apropiado en escalamiento unidimensional dado que permite estimar la densidad del rasgo latente, es m.s flexible para modelar las FROs, y como resultado puede ser m.s robusto a mis especificaciones de la dimensionalidad de los datos. El modelo LISCOMP, por su parte, es particularmente apropiado en escalamiento multidimensional, así como para modelar las relaciones entre las dimensiones del escalamiento y variables externas. Los modelos no paramétricos como MFS no son generalizables fácilmente a situaciones multidimensionales ya que habitualmente utilizan restricciones que suavizan la forma de las funciones utilizadas. Estas restricciones se basan en supuestos acerca de las formas de las FROs y de las densidades de los rasgos latentes. Sin embargo, puede ser difícil el llegar a establecer un conjunto de restricciones común para diferentes diseños muestrales y para diferentes soluciones dimensionales.

Palabras clave: TRI; teoría de respuesta a los items.

 
Read Article

View PDF

Correspondencia: Alberto Maydeu-Olivares
Dept. of Psychology. University of Illinois.
603 E. Daniel St. Champaign, IL 61820. USA
E-mail: amaydeu@s.psych.uiuc.edu

 

Top page >>
 
Home Search Contact Home