
Differential Item Functioning (DIF) constitutes a potential th-
reat to the validity of a test. Both the APA (American Psychologi-
cal Association) and the ITC (International Test Commission)
standards emphasize the necessity of checking for DIF in order to
guarantee the fair use of a test (AERA, APA, NCME, 1999; COP-
ITC, 2000). With these recommendations in mind, and with the in-
tention of spreading the application of DIF analyses, researchers
should develop and assess DIF detection methods that would be
easily implemented by practitioners lacking a highly technical or
statistical background.

Focusing on polytomous graded response items, a number of
methods have been proposed to detect both uniform and non-uni-
form DIF (see Potenza & Dorans, 1995; Hidalgo & Gómez, 1999).
One of these methods is based on a popular technique among psy-

chologists: Factor Analysis. In this paper, we evaluate a Factor-
Analysis-based DIF detection method: the Multiple Group Confir-
matory Factor Analysis with Mean and Covariance Structure
(MG-CFA-MACS).

In the last few years, the MG-CFA-MACS has attracted the at-
tention of DIF researchers and has been frequently applied for the
evaluation of both uniform and non-uniform DIF on polytomous
items with ordered response alternatives (Everson, Millsap & Ro-
driguez, 1991; Byrne, 1998; Tomás, González-Romá, & Benito,
2000; Chan, 2000; Wasti, Bergman, Glomb, & Drasgow, 2000).
Taking into account that all these studies have used empirical da-
ta, the extent to which using a continuous response model such as
the MG-CFA-MACS is adequate for the correct detection of DIF
on polytomous ordered response items must be clarified. The pre-
sent study addresses this issue using simulated data.

Analyzing polytomous graded response items by means of the
Confirmatory Factor Analysis with Mean and Covariance

Structure model

When using items with ordered response categories such as Li-
kert-type rating scales, it is assumed that a latent unidimensional
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continuous variable (ξ) underlies the item responses. In respon-
ding to these kinds of items, the subjects locate themselves on the
latent continuum by selecting the response category that best ex-
presses their position on that continuum. Successive integers are
assigned to the successive m categories in such a way that they
cumulatively reflect the measured construct.

Using polytomous graded response items, it can be assumed that
the item responses are approximations of continuous responses
(Ferrando, 1996; Mellenbergh, 1994). Based on this assumption,
the Confirmatory Factor Analysis (CFA) with Mean and Covarian-
ce Structure (MACS) model (Sörbom, 1974), which is a method for
analyzing continuous items, can be applied to the analysis of poly-
tomous ordered response items. In this model, the item response of
the individual i to the item j,  X i j can be explained by means of the
linear regression of X i j on the latent trait variable ξi a s :

X ij= µ j + λjξj + δ ij (1)

The regression intercept, µj, represents the expected mean res-
ponse to item j for subjects at the latent trait value of zero. The re-
gression coefficient or factor loading, λj, refers to the expected
change in the item response Xij per unit change in ξ i. Finally, δij is
the random error term. Within the CFA-MACS model, the item in-
tercept corresponds to the item location or attractiveness parame-
ter, whereas the item factor loading corresponds to the item discri-
mination parameter (Ferrando, 1996; Mellenbergh, 1994).

Evaluation of DIF by means of the MG-CFA-MACS model

An item shows DIF when individuals with equal levels on the
latent trait respond differently to the item depending on group
membership. DIF can either be uniform or non-uniform depending
on which item parameter, location or discrimination, is not inva-
riant across the groups of interest. The location or attractiveness
parameter corresponds to the expected mean item response value
for a given trait level. The item discrimination parameter refers to
the ability of the item to differentiate among people with different
latent trait levels. The higher the discrimination parameter, the bet-
ter the item distinguishes among people with similar levels on the
latent trait. 

The Multiple-Group (MG) extension of the CFA-MACS model
allows researchers to test both uniform and non-uniform DIF accor-
ding to group membership. The MG-CFA-MACS is formulated as:

where µj,, λj, and δij are defined as in equation 1 and g refers to
group membership.

In general terms, testing the null hypothesis that parameter µj i s
invariant across groups [e.g., µ ( 1 )

j = µ ( 2 )
j = …= µ ( G )

j ] allows researchers
to test the presence of uniform DIF, whereas testing the null hypot-
hesis that parameter λj is invariant across groups [e.g., λ ( 1 )

j = λ
( 2 )
j =

…= λ
( G )
j ] allows researchers to test the presence of non-uniform DIF.

The iterative DIF detection procedure, based on the MG-CFA -
MACS model analyzed here, uses modification indices (MI) for
detecting which specific items function differentially across
groups (Chan, 2000). A MI shows the reduction in the model’s chi-
square value if the implied constrained parameter is freely estima-
ted. Because this chi-square difference is distributed with one de-

gree of freedom, it is easy to determine whether the reduction in
chi-square is statistically significant. The procedure starts with a
fully equivalent model in which all the item factor loadings and the
intercepts are constrained to be equal across groups. Then the non-
uniform DIF is evaluated. Specifically, the largest modification in-
dex (MI) associated with the factor loading estimates is evaluated
to determine its statistical significance. If the largest lambda MI is
statistically significant, the conclusion can be drawn that the co-
rresponding item exhibits non-uniform DIF across the two groups.
Then, a new model is fitted. In this model, the factor loading that
showed a statistically significant MI is freely estimated, while the
remaining lambda estimates are constrained to be equal in both
groups. The largest MI associated with the lambda estimates is
evaluated again to determine its statistical significance, and this
iterative procedure continues until the largest MI is not statistically
significant. After evaluating non-uniform DIF, the procedure focu-
ses on uniform DIF to determine the statistical significance of the
MIs associated with the intercepts. If the largest MI associated
with the intercepts is statistically significant, it can be concluded
that the corresponding item exhibits uniform DIF across groups.
As before, a new model is fitted in which the corresponding inter-
cept is freely estimated, while the remaining intercepts are cons-
trained to be equal in both groups. The largest intercept MI is eva-
luated again to determine its statistical significance. This iterative
procedure continues until the largest intercept MI is not statisti-
cally significant. Taking into account that each MI is evaluated
multiple times, the Bonferroni correction should be used to test the
significance of the reduction on chi-square at a specified alpha.

There is a simulation study that evaluates a different DIF de-
tection procedure based on factor analysis: Oort’s (1992) restric-
ted factor analysis method of item bias detection. Within this met-
hod, the common factor model serves as an item response model,
and a different factor is included for each of the potential causes
of DIF. However, this model does not make it possible to diffe-
rentiate between uniform and non-uniform DIF. Oort (1998) ca-
rried out a simulation study to test the adequacy of the model he
proposed for the detection of DIF on polytomous graded response
items. The results of this study showed that the model was ade-
quate for the evaluation of DIF in items with seven response cate-
gories, especially when the sample size was large, the mean trait
difference between the focal and reference groups was small, the
sizes of both groups were equal and the amount of bias was large.
But, even when the number of response categories was reduced to
two, this continuous approximation was as good as an established
method based on the one-parameter logistic item response model.
Moreover, results also showed that when the number of categories
was seven, it was better to use an iterative procedure for the de-
tection of DIF than a non-iterative procedure.

In summary, the MG-CFA-MACS continuous approach has be-
en used for the evaluation of DIF in polytomous items with an or-
dered response format (e.g., Chan, 2000). However, the adequacy
of this approximation for the detection of DIF has never been tes-
ted. Consequently, the main aim of the present paper is to study the
extent to which the MG-CFA-MACS model is adequate for the de-
tection of DIF in non-continuous items, specifically in polytomous
items with an ordered response format. To attain this objective, the
Graded Response Model (GRM) proposed by Samejima (1969)
for the analysis of polytomous items is employed to simulate the
data of the focal and reference group. Then the MG-CFA-MACS
model is fitted to evaluate DIF.

X ij
( g) = µ j

( g) +λ j
(g) ξ i

(g ) + δ ij
(g )
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To date, the adequacy of this continuous approach for the de-
tection of DIF has not been evaluated in simulated data. Although
Oort (1998) carried out a Monte-Carlo study to evaluate a conti-
nuous approximation of the CFA in the detection of DIF, he did it
from a different model that does not allow researchers to test uni-
form and non-uniform DIF and that, in fact, has not been applied
as often as the MG-CFA-MACS model in empirical research.
Consequently, the MG-CFA-MACS model is the focus of atten-
tion in the present study.

Method

Simulation of data

The simulation process started with the generation of both the
reference and focal trait levels according to a standard normal dis-
tribution N(0,1). The item responses were generated according to
the Graded Response Model (Samejima, 1969), probably one of
the most widely used IRT models to analyze polytomous graded
response items. In this model, the probability of person i respon-
ding above category k to item j, that is, the boundary response
function (BRF), is:

where aj is the discrimination parameter for item j; bjk is the kth
boundary parameter for the jth item, which corresponds to the le-
vel of trait at which P *

jk (θs) is .50; and θi is the trait level parame-
ter for person i. For an item with m response categories, there are
mj-1 BRFs determined by a discrimination parameter aj and m j-1
location parameters bjk.

In order to simulate realistic conditions in the field of persona-
lity and attitude measurement, the sample sizes of the reference and
the focal group were set at 800, and 10 items with five response op-
tions were considered. Ten items is a usual number for the measu-
rement of personality and attitudes (for instance, see the Fifth Edi-
tion of the 16PF Questionnaire). Five categories is also a frequent
number in this context, and it is the minimum recommended by dif-
ferent authors (Bollen & Barb, 1981; Dolan, 1994) to adequately
represent the subject’s scores on graded response items by means of
the CFA-MACS model. To select the parameter values, a 22-item
Job Satisfaction questionnaire was employed. The unidimensiona-
lity of this questionnaire had been previously tested in a sample
made up of 932 subjects (González-Romá, Peiró & Tordera, 2002).
The results were satisfactory, with the exception of one item that
showed a low loading (λ= .24) and, therefore, was excluded in the
subsequent analyses. To select the item parameters to be used in the
data simulation, the Graded Response Model (GRM) (Samejima,
1969) was fitted. Two requirements had to be met for the selection
of the item parameters: 1) Taking into account that some studies ha-
ve shown that differential item skewness has important effects on
the adequacy of the CFA-MACS when applied to polytomous gra-
ded response items (Ferrando, 1999; Olsson, 1979), only items sho-
wing a skewness with an absolute value under 1 were selected; and
2) After adjusting the GRM to the non-skewed selected items, only
items with bj k estimates of between –2.5 and 2.5 were selected, in
order to guarantee that all the response options were represented in
the data and that the estimates were accurate enough.

Apart from a non-DIF condition in which all the 10 item para-
meters were equal for both groups, two factors were varied in or-
der to create different DIF-conditions: the type of DIF (uniform
and non-uniform) and the magnitude of DIF (low, medium and
high). In these conditions the bk parameters or the a parameter of
one item (item 10) were varied across groups (for the uniform and
non-uniform DIF conditions, respectively). For the uniform DIF
conditions, the four bk parameters of item 10 for the focal group
were obtained by adding a constant to the four bk parameters of the
reference group. Consequently, item 10 was less attractive for the
focal group. For the non-uniform DIF conditions, the a parameter
of item 10 for the focal group was obtained by subtracting a cons-
tant from the reference group discrimination parameter. Conse-
quently, item 10 was less discriminative for the focal group. To
make both uniform and non-uniform DIF comparable, the constant
values were selected to obtain the same differences between the
areas of the expected item response functions for both the referen-
ce and the focal groups. 

The expected item response function is ,

where ujk is the weight for response category k of item j and Pjk(θi)
is the probability that examinee i will choose category k for item j.
The unsigned area measure (UA, see Cohen, Kim, & Baker, 1993),
to estimate the area between the item response functions of each
group, can then be obtained from the equation 

Three sizes of differences between the areas were considered:
.50, 1 and 1.50 for the low, medium and high DIF conditions, res-
p e c t i v e l y. Approximating the unsigned area for 70 intervals betwe-
en θ= -3.5 and θ= 3.5, we found that, for the low DIF condition, the
required group difference in the a parameters to reach an area dif-
ference of .50 was .33, whereas the required difference in each of
the four b parameters to reach an area difference of .50 was .125.
The required differences in the a and b item parameters to reach an
area difference of 1 were .55 and .25, respectively. The correspon-
ding differences in the a and b item parameters to produce an area
d i fference of 1.5 were .73 and .375, respectively. The item 10 pa-
rameters for the different DIF conditions are displayed in Table 1.

Thus, seven conditions were evaluated (2 types of DIF x 3
magnitudes of DIF + 1 non-DIF condition). For each condition,
100 samples were generated.

After having the item parameters and the simulated subjects’
trait levels, P *

jk (θi) was calculated for every examinee. Then, for
each simulated subject i , a single random number (Y) was sam-
pled from a uniform distribution over the interval [0,1], and the

UAj = ujk PjkR(θi )− ujk PjkF(θi )
k=1

m j

∑
k=1

m j

∑
−∞

∞

∫ dθ

E(X ji )= u jk
k=1

m j

∑ Pjk (θi )

Pjk
* (θ i ) =

e aj( θi −bjk )

1+ e aj(θ i −b jk )
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Table 1
Item 10 parameters for the manipulated conditions

Uniform Non-Uniform
Non-DIF Low-DIF Medium-DIF High-DIF Low-DIF Medium-DIF High-DIF

a 1.68 1.68 1.68 1.68 1.35 1.13 .95
b1 -1.88 -1.755 -1.63 -1.505 -1.88 -1.88 -1.88
b2 -1.07 -.945 -.82 -.695 -1.07 -1.07 -1.07
b3 -.31 -.185 -.06 .065 -.31 -.31 -.31
b4 1.01 1.135 1.26 1.385 1.01 1.01 1.01



item scores were assigned as follows: If Y was smaller than the
probability of responding above category k and greater than the
probability of responding above category k+1, then the score as-
signed was k. For the 5-category items simulated:

It should pointed out than when uniform DIF was generated by
means of the GRM, only the bk parameters were varied across
groups. Consequently, only differences in the intercepts estimated
by means of the MG-CFA-MACS were expected, because the th-
resholds between adjacent categories, but not the item slopes, are
different. However, when non-uniform DIF was generated in our
data, although only the a parameter was changed across groups,
differences in both the intercepts and the slopes, estimated by me-
ans of the MG-CFA-MACS, were expected. The reason is that
when the slope is changed, the distance between the thresholds of
adjacent categories changes too, regardless of whether the respon-
se boundary parameters bk are equal or not. Consequently, the ex-
pected item score at a specific level of the latent trait will change
too, and this variation will be reflected in the intercept, which is
the expected item score at the trait level of 0, that is µj= E(Xjθ=
0). The more different the slopes between groups are, the more dif-
ferent the intercepts are expected to be. For example, for the low
non-uniform DIF condition, the expected difference between in-
tercepts was .01 (µReference- µ Focal = .01), whereas for the medium
and high non-uniform DIF conditions, the expected differences
were µR- µ F= .10 and µR- µ F= .16 , respectively.

Analysis

Analyses were carried out by means of LISREL 8 (Jöreskog &
Sörbom, 1993), using Maximum Likelihood (ML) estimation. Be-
cause skewness and kurtosis of variables from which data were ge-
nerated were minimal (skewness ranged from –.92 to .37, and kur-
tosis ranged from -.72 to -.007), the assumption of approximate
normality and the use of ML estimation techniques can be sup-
ported (Bollen, 1989). The Multiple-Group CFA-MACS model
was fitted to the 10 x 10 item variance-covariance matrices and
vectors of 10 means of both the reference and the focal groups. To
detect uniform and non-uniform DIF, a series of nested multiple-
group single factor models were tested according to the iterative
procedure described in the introduction (Chan, 2000). At each step
of this iterative procedure a maximum of 10 MIs was considered.
Therefore, in order to determine the statistical significance of each
MI, the alpha value was set at .05/10 = .005, applying the Bonfe-
rroni correction.

For all the models, a number of constraints was imposed for
model identification and scale purposes. First, an item was chosen
as the reference indicator (specifically item 4). This item factor lo-
ading was set to 1 in both groups, in order to scale the latent va-
riable and provide a common scale in both groups. Second, the
factor mean was fixed to zero in the reference group for identifi-

cation purposes, whereas the factor mean in the focal group was
freely estimated. Finally, the reference indicator intercepts were
constrained to be equal in both groups, in order to identify and es-
timate the factor mean in the focal group and the intercepts in both
groups (Sörbom, 1982).

Results

Two indicators were calculated to determine the accuracy of
DIF detection: 1. the true positive (TP) ratio or proportion of co-
rrect identifications of item 10 for the DIF conditions, and 2. the
false positive (FP) ratio or proportion of incorrect DIF identifi-
cations of items 1 to 9 for the 6 DIF conditions, and of items 1 to
10 for the non-DIF condition. An item was considered to show
DIF when the decrement in chi-square shown by the correspon-
ding MI was statistically significant (that is, equal to or greater
than χ2

(.005,1)= 7.88). The results are separately considered in the
following paragraphs according to the different DIF conditions.

Focusing on the non-DIF condition, the results obtained sho-
wed that both the proportion of FPs in the intercept, that is, the
proportion of items that were detected as showing uniform DIF,
and the proportion of FPs in the factor loading, that is, the propor-
tion of items that were detected as showing non-uniform DIF, we-
re .008. According to Bradley (1978), an observed proportion of
false positives is robust at a nominal significance level of .005 if it
is between 0.0025 and .0075. Thus, although the observed ratio of
.008 is very close to the assumed nominal level of .005, rigorously
speaking, it is not robust. We also computed the proportion of
items incorrectly flagged as DIF items, regardless of whether they
were flagged by statistically significant MIs associated with item
intercepts or by statistically significant MIs associated with item
factor loadings. This proportion was computed as follows: (pro-
portion of items wrongly flagged as DIF items because of statisti-
cal significance of their intercepts’ MIs) + (proportion of items
wrongly flagged as DIF items because of statistical significance of
their factor loadings’ MIs) – (proportion of items wrongly flagged
as DIF items because of statistical significance of their factor loa-
dings’ MIs and their intercepts’ MIs). For the non-DIF condition
this proportion equaled 0.016.

With regard to the DIF conditions, the proportion of FPs and
the proportion of TPs (in both l, and m parameters) are shown in
Table 2 for both uniform and non-uniform DIF conditions and for
the three considered DIF sizes. Column c contains the constant va-
lues that were added to the reference group bk parameters or sub-
tracted from the reference group a parameter to obtain the focal
group parameters. 

Starting with the uniform DIF conditions, we recall that only
the identification of DIF in the intercept of item 10 was conside-
red a correct identification. Results showed a different pattern for
the proportion of FPs depending on the parameter evaluated. For
the three DIF sizes (low, medium, and high), the proportion of FPs
in which DIF was wrongly detected in µ (.002, .001, and .005, res-
pectively) was equal to or less than the nominal alpha value of
.005. However, the proportions of FPs in which DIF was wrongly
detected in λ (.011, .009, .013 ) were higher than the nominal va-
lue of .005, and they were not robust according to Bradley’s
(1978) criterion. The proportions of items incorrectly flagged as
DIF items, regardless of whether they were flagged by statistically
significant MIs associated with item intercepts or by statistically
significant MIs associated with item factor loadings, were .013,

k = 5 if Pj4
* (θ i ) ≥ Yji

k = 4 if Pj4
* (θ i )< Y ji ≤ Pj3

* (θ i )

k = 3 if Pj3
* (θ i )< Yji ≤ Pj2

* (θ i )

k = 2 if Pj2
* (θ i ) < Yji ≤ Pj1

* (θ i )

k =1 if P j1
* (θ i )< Y ji
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.010, and .018, for the low, medium, and high DIF sizes, respecti-
vely. As we expected, the proportion of TPs in which DIF was co-
rrectly detected in µ increased as the DIF size increased. Specifi-
cally, the proportion of TPs in the Low DIF condition was equal to
.16, whereas the proportion of TPs in the Medium DIF condition
was equal to .88. DIF was perfectly detected in the High DIF con-
dition.

Finally, with regard to the non-uniform DIF conditions, DIF
identifications in both item 10 discrimination and location para-
meters were considered correct identifications. In this case, results
showed that, for all DIF sizes, the proportion of FPs was less than
the nominal level of .005 in four out of the six cases. In the two ca-
ses in which this proportion exceeded .005, the observed values
were less than .0075. The proportions of items incorrectly flagged
as DIF items, regardless of whether they were flagged by statisti-
cally significant MIs associated with item intercepts or by statisti-
cally significant MIs associated with item factor loadings, were
.008, .006, and .010, for the low, medium, and high DIF sizes, res-
pectively. The proportion of TPs in which DIF was correctly de-
tected in λ and in µ increased as the DIF size increased. However,
compared with the uniform-DIF conditions, greater differences
were necessary in the item parameters across groups to attain TP
ratios far from zero. The proportions of TP were .01 and 0, for λ
and µ, respectively, in the low DIF condition. They increased to
.06 and .03, respectively, in the medium DIF condition, and to .44
and .19 in the high DIF condition. For the non-uniform DIF con-
ditions, we computed the proportion of items correctly flagged as
DIF items, regardless of whether they were flagged by statistically
significant MIs associated with item intercepts or by statistically
significant MIs associated with item factor loadings. These pro-
portions were .01, .09 and .56 for the low, medium and high DIF
conditions, respectively.

Discussion

This study evaluated the adequacy of a procedure based on the
Multiple-Group Confirmatory Factor Analysis with Mean and Co-
variance Structure (MG-CFA-MACS) for the detection of DIF on
polytomous graded response items. The adequacy of the model
was evaluated according to the proportion of correct identifi-
cations of the DIF item (True Positive (TP) ratio or power) and the

proportion of incorrect identifications of non-DIF items (False Po-
sitive (FP) ratio or Type I error) on both the location and discrimi-
nation parameters. 

Results showed that the proportion of FPs stayed close to the
nominal alpha level for the non-DIF condition and for all the non-
uniform DIF conditions. However, for the uniform-DIF conditions
the results obtained showed a different pattern for the proportion
of FPs depending on the parameter evaluated. For the three DIF si-
zes considered, the proportion of FPs in which DIF was wrongly
detected in µ was equal to or less than the nominal alpha value,
whereas the proportion of FPs in which DIF was wrongly detected
in λ was higher than the nominal alpha value of .005. If we focus
on the proportion of items incorrectly flagged as DIF items, re-
gardless of whether they were flagged by statistically significant
MIs associated with item intercepts or by statistically significant
MIs associated with item factor loadings, a different pattern of re-
sults appears depending on the type of DIF: this proportion was lo-
wer for the non-uniform DIF conditions than for the uniform-DIF
conditions. Overall, these results point out that the DIF detection
procedure analyzed maintained reasonable control of its Type I
error under non-uniform DIF conditions, whereas under uniform-
DIF conditions the procedure analyzed showed slight difficulties
in maintaining control of its Type I error.

Regarding the TP proportion, the results obtained depended on
the type and magnitude of DIF. Focusing on the uniform-DIF con-
ditions, where only the location parameters were expected to vary,
results showed that in the Low DIF condition, in which the diffe-
rence between the bk parameters of the reference and the focal
groups was set to .125, the proportion of TPs was only .16. Ho-
wever, for the medium and High DIF conditions, differences of .25
and .375 between the bk parameters resulted in 88% and 100% of
correct identifications, respectively. For the uniform-DIF condi-
tions, the expected differences in E(X) between the reference and
the focal group when the latent trait value was 0, that is, the ex-
pected differences between the intercepts, were .07, .19 and .309
for the low, medium and high DIF conditions, respectively. There-
fore, it is possible to conclude that differences in the intercept of
about 0.19 are needed to achieve satisfactory rates of correct DIF
identifications (about 88%) in the intercept. The implications of
this result for the detection of uniform DIF using the MG-CFA-
MACS are remarkable. If we take into account that the items si-
mulated in this study showed a response scale ranging from 1 to 5,
we can conclude that the MG-CFA-MACS is very sensitive to
small differences across groups in the item intercept. Overall, the
results obtained point out that, under uniform-DIF conditions, the
power of the procedure analyzed was affected by DIF size (as we
expected), and that the DIF detection procedure showed a satis-
factory power to detect DIF when its size was medium and high.

Focusing on the non-uniform DIF conditions, where both item
parameters (the intercept and the factor loading) were expected to
vary, results showed that the procedure analyzed here lacked the
power to consistently detect DIF. The maximum power (.44) was
achieved when DIF size was high and the factor loading was the
involved parameter. Comparing the power results obtained for the
uniform and the non-uniform DIF conditions, the conclusion can
be drawn that the DIF detection procedure analyzed shows diffe-
rential sensitivity to both types of DIF.

This study shows a number of limitations that should be over-
come in future research. First,  the use of the GRM has the disad-
vantage tha t, given a  specific magnitude of DIF according to this
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Table 2
Proportions of detected DIF items

UNIFORM NON-UNIFORM
c Parameter FP TP FP TP

evaluated

Low DIF aR-aF=.33 λ .011 – .006 .010
bR-b F=.125 µ .002 .160 .002 .000

Medium DIF aR-aF=.55 λ .009 – .003 .060
bR-bF=.25 µ .001 .880 .003 .030

High DIF aR-aF=.73 λ .013 – .003 .440
bR-b F=.375 µ .005 1 .007 .190

Note. TP: True positives.FP: False positives. c: constant values added to the reference
group’s bk parameters or subtracted from the reference group’s a parameter to obtain the
focal group’s parameters.



area measure, changes in the slope parameters are expected to
produce changes in both the discrimination parameter (the item
factor loading) and the location parameter (the  intercept). So,
only one type of non-uniform DIF (mixed) can be generated and
evaluated. New studies must be deve loped using models such as
the Generalized Partial Credit Model (GPCM) (Muraki, 1992),
which will allow researchers to generate and evaluate symmetric
non-uniform DIF. Second, this study has focused on favorable
circumstances for the CFA-MACS model to adequa tely represent
the polytomous graded response items: the  number of categories
is five (the minimum required for this continuous approach to be
applied (Bollen & Barb, 1981; Dolan, 1994)), and all the item res-
ponses show similar skews. Thus, different conditions, in which
the number of categories or the item skews are varied, must be
considered in future studies. Third, in the present simulation
study only two factors were manipulated in order to create diff e-

rent DIF-conditions: the type of DIF (uniform and non-uniform)
and the magnitude of DIF. The two groups of subjects that we si-
mulated had identical latent trait distributions and the same size.
Future  studies should investigate the performance of the analyzed
procedure when the comparison groups differ in latent trait distri-
bution and in size. In the same way, factors such as the  percenta-
ge of DIF items or Type I error should be varied too. Finally,
when using the MG-CFA-MACS model, the reference or ‘ancho-
ring’ indicator is assumed to be free of DIF. The consequences of
using a DIF item as a reference indica tor when this model is em-
ployed must be evaluated too.
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