
Over the past few decades, much psychometric research has
been aimed at improving the use of educational and psychological
tests as means for decision making rather than for estimating
ability scores from test performances. Examples of such decisions
are admittance of students to a university and personnel selection
in industry (e.g., Chuang et al, 1981; Cronbach and Gleser, 1965;
De Corte, 1998; Petersen, 1976; Raju et al., 1991; van der Linden
and Vos, 1996; Vos, 1997a), pass-fail decisions in education and
successfulness of therapies in psychodiagnostics (e.g., Huynh,
1977; Lewis and Sheehan, 1990; Vos, 2001), optimal assignment
of students to different instructional treatments in Aptitude
Treatment Interaction (ATI) research (e.g., Cronbach and Snow,
1977; van der Linden, 1981; Vos, 1997b), and vocational guidance
decisions in which most promising schools or careers must be
identified (e.g., van der Linden, 1987). Optimal cutoff points can
be found by formalizing each of the above types of elementary
test-based decisions as a problem of Bayesian decision making by

maximizing its expected utility (e.g., DeGroot, 1970; Lehmann,
1959). 

The existing psychological and educational literature discusses
how cutoff points can be determined, while there is only one test
or one measure which weighs the scores on a number of tests as a
composite score, or, for many tests, how the cutoff point on each
test can be determined separately. However, no results are reported
how in case of a multiple test composed of several tests the cutoff
points on each separate test and the collective rule (i.e.,
aggregation procedure) can be determined dependently. For
example, take a predictor-based selection system in which the
collective decision rule is that an applicant must pass (n+1)/2 out
of n predictor tests, then one must decide on a cutoff point for each
separate predictor test. 

Therefore, the goal of this paper is to present a model that takes
into account the dependence between the cutoff points on a number
of predictor tests composing a multiple test and its aggregation
process to come to a collective decision in terms of rejecting or
admitting an applicant for a job in industrial/organizational (I/O)
psychology. In other words, the cutoff points and the aggregation
rule will be optimized simultaneously by maximizing the multiple
test’s common expected utility. 

In essence, personnel selection involves the screening and
comparison of applicants by means of valid procedures with the
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purpose of obtaining the intended quota of supposedly most
successful employees (e.g., Cronbach and Gleser, 1965). In
selecting the required quota or selection ratio (i.e., fixed
proportion of all applicants that can be accepted due to shortage of
resources), a mechanism of top-down selection is usually followed
by selecting applicants with the highest scores on the (composite)
predictor test until the quota is filled. For instance, the well-known
Taylor-Russell (1939) tables are based on this formalism. 

In addition, top-down selection formalisms have been proposed
in personnel selection that are based on the expected average
criterion score of the selected applicants (e.g., Boudreau, 1991;
Brogden, 1949; Cronbach and Gleser, 1965; De Corte, 1994). In
fact, these methods are prevailing in the literature but cannot be
employed if future criterion behavior (i.e., job performance) is
assumed to be a dichotomous variable, that is, either successful or
not (e.g., Raju et al, 1991). In these situations we have to resort to
the expected success ratio, that is, the proportion of applicants
accepted that will be successful in their future job performance.

Although the existing psychology literature dealing with
classification procedures in terms of acceptance/rejection usually
takes the given quota into account, this approach is not followed in
the present paper. The main reason is that there are many problems
in which it is not feasible to assume quota restrictions, for example,
deciding on whether or not to hospitalize a patient. In the field of
personnel selection, also situations may exist in which it is not
feasible to impose quota restrictions. For instance, if we want to
select all applicants who showed satisfactory performance on a
fixed number of predictor tests. This is exactly the situation where
the present paper is aiming at by selecting all applicants with scores
on each predictor test higher than a cutoff point that clearly
depends on the number of predictor tests composing the multiple
test, the aggregation process of predictor tests’ recommendations,
and the function relating the tests’ decisional skills to the cutoff
point. In principle, unlike the fixed quota methods, none or all of
the applicants might be selected with the unconstrained
dichotomous choice model proposed in the present paper. 

The problem addressed in the present paper shows some
correspondence to the case of multiple hurdles or multi-stage
selection in I/O psychology (e.g., De Corte, 1998, Milkovich and
Boudreau, 1997; Sackett and Roth, 1996). The case of multiple
hurdles deals with a situation in which an applicant is expected to
show minimum proficiency in several skill areas. In this scenario,
as opposed to, for instance, multiple regression analysis, a high
proficiency in one skill area will not typically compensate for a
low proficiency in another skill area. 

The model advocated here has been applied earlier successfully
by Ben-Yashar and Nitzan (1997, 1998, 2001) to the field of
economics where organizations face the comparable problem of
deciding on approval or rejection of investment projects. A team
of n decision makers has to decide which ones of a set of projects
are to be accepted so as to maximize the team’s common expected
utility. The proposed group decision-making method can be
applied to many binary decisions determined by teams of decision
makers or test systems. 

The paper is organized as follows. Section 2 applies the Ben-
Yashar and Nitzan economic model to the field of personnel
selection. In Section 3 we derive necessary and sufficient
conditions for optimal cutoff points of single and multiple tests. In
Section 4 the optimal cutoff points set on single and multiple tests
are compared by deriving an inequality that specifies the

relationship between these two types of cutoff points. Section 5
focuses on the comparison of the two types of cutoff points for
special types of collective rules, namely, disjunctive and
conjunctive ones. The comparison between optimal cutoff points
for single and multiple tests in predictor-based selection is
empirically illustrated in Section 6 where applicants are either
accepted or rejected as trainees by means of the Assessment
Center method. The concluding section contains a brief summary
of the main result and discusses a possible line of future research
arising from the present study. 

The model

In the field of personnel selection, it often occurs that an
applicant is either accepted or rejected for a job based on a
multiple test composed of several predictor tests, i.e., a battery of
n (n ≥ 1) performance measures such as psychological tests, role-
plays, and work sample tasks. It is assumed that the true state of
an applicant regarding the future job performance (usually a
supervisory performance rating) is unknown and can be qualified
as either suitable (s= 1) or unsuitable (s= -1). An applicant is
qualified as suitable if his or her performance is at least equal to a
pre-established cutoff point (performance level) on the criterion
variable(s) represented by the future job performance.
Furthermore, based on applicant’s performance on predictor test i
(1 ≤ i ≤ n), it is decided if an applicant is passed (ai= 1) or failed
(ai= -1) on predictor test i. The predictor tests i will usually differ
in their outcomes regarding passing or failing of applicants. The
decision table for each predictor test i is therefore: 

The true state of an applicant, however, is unknown on each of
the n predictor tests. Instead, an applicant receives a test score xi

(i.e., a performance rating) on each predictor test i which depends
on applicant’s performance in a certain skill area. It is assumed
that the scales of the predictor tests have been transformed such
that they cover all the same range of test scores. The pass-fail
decision ai is now made by setting a cutoff point on each test score
xi in the form of a threshold Ri (i.e., predictor cutoff) such that 

xi ≥ Ri ⇒ ai = 1 
xi < Ri ⇒ ai = -1

The test score xi is drawn from a known distribution function
represented by the density f1(xi) for suitable and f2(xi) for
unsuitable applicants. Therefore, the conditional probabilities p1

i

and p2
i that a predictor test i makes a correct pass-fail decision

under the two possible states of nature (the decisional skills of
each predictor test) are: 

and

pi
1 = Pr ai = 1| s = 1{ } = f1

Ri

∞

∫ (xi )dxi
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Decision State Applicant 

Suitable Unsuitable

Pass (1,1) (1,-1)

Fail (-1,1) (-1,-1)
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where (1-p1
i) and (1-p2

i) can be interpreted as Type I and Type II
error probabilities (i.e., probabilities of making incorrect fail and
pass decisions) of each predictor test i. Decisional skills of
predictor tests are assumed to be endogenous variables that
depend on the cutoff points to be set. 

Note that we make the following assumptions: (i) .

This assumption implies that  p1
i>(1-p2

i), that is, a suitable
applicant is more likely to be passed on predictor test i than an
unsuitable applicant. Thus, since the simple average of the test’s
decisional skills in the two states of nature exceeds 0.5, each
predictor test participating in the collective decision-making
process is valuable because this test’s decisional skill is superior to
that of a random decision process. (ii) decisional skills of predictor
tests are statistically independent. It should be noted that the
assumption of statistical or local independence is also frequently
made in other applications of psychological and educational tests.
Local independence then means that when the abilities influencing
test performance are held constant (i.e., conditioning on ability),
examinees’ responses to any pair of items are statistically
independent. In fact, local independence is one of the basic
assumptions made in Item Response Theory (IRT) models (e.g.,
Hambleton et al, 1991; Olea et al, 2004).

The vector a = (a1,…, an) is referred to as the decision profile
of a set of n predictor tests for an individual applicant, where ai=
1 or ai = -1 denotes if the applicant is either passed or failed on
predictor test i (1 ≤ i ≤ n). The collective decision, acceptance (1)
or rejection (-1) of an applicant, is then determined by means of
a decisive aggregation rule g that transforms the profile of
decisions on n predictor tests into a collective decision. g is
referred to as the structure of the collective decision-making
process and assigns 1 or –1 (acceptance or rejection of an
applicant) to any decision profile a in Ω= {1,-1}n. That is, g: Ω
→ {1,-1}. The same problem is faced in the multiple hurdles
scenario where, based on applicant’s performance on several
tests, a collective decision 1 or –1 (acceptance or rejection of an
applicant) must be made.

To formally define the objective function (i.e., the multiple
test’s common expected utility), we need to present the conditional
probabilities of reaching a correct collective decision, given the
structure g. Let us therefore partition the set Ω of all decision
profiles into A(g/1) and A(g/-1), where A(g/1)= {a ∈ Ω g(a)= 1}
and A(g/-1) = {a ∈ Ω g(a)= -1}, where g(a) is the collective
decision for a decision profile a. For a given structure g, the
collective decision-making process accepts a suitable applicant
and rejects an unsuitable applicant with probability ϕ(g/1) and
ϕ(g/-1), respectively, where ϕ(g/1)= Pr{a ∈ Α(g/1) s= 1} and
ϕ(g/-1)= Pr{a ∈ Α(g/-1) s= -1}. Note that for a single test i,
ϕ(g/1) and ϕ(g/-1) are equal to respectively p1

i and p2
i. 

Necessary and sufficient conditions for optimal cutoff points 

For a multiple test, our goal is to derive the collective decision
rule g and cutoff point Ri (1 ≤ i ≤ n) on predictor test i (1 ≤ i ≤ n)
dependently that maximize the multiple test’s common expected
utility. Therefore, the following problem is faced:

Max Ri,g αU(1/1)ϕ(g/1) + αU(-1/1)[1-ϕ(g/1)] + (1-α)
U(-1/-  1)ϕ(g/-1) + (1-α)U(1/-1)[1-ϕ(g/-1)],              (1)

where U(1/1), U(1/-1), U(-1/-1) and U(-1/1) are the (economic)
utilities corresponding to the four possible decision outcomes on
each predictor test, that is, correct passing (true positive), incorrect
passing (false positive), correct failing (true negative), and
incorrect failing (false negative). Furthermore, α (α ≠ 0,1) and (1-
α) denote the a priori probabilities that an applicant is qualified as
either suitable (1) or unsuitable (-1). Since [αU(-1/1) + (1-α)U(1/-
1)] does not depend on Ri, the above maximization problem can be
reduced to the following form:

Max Ri,g αU(1/1)ϕ(g/1) - αU(-1/1)ϕ(g/1) + (1-α)U(-1/-1)
ϕ(g/-1) - (1-α)U(1/-1)ϕ(g/-1)

Let U(1)= [U(1/1) - U(-1/1)] denote the positive net utility
corresponding to the correct pass decision, and let U(-1)= [U(-1/-
1) - U(1/-1)] denote the positive net utility corresponding to the
correct fail decision, it then follows that the maximization problem
in (1) can be formulated as:

Max Ri,g αU(1)ϕ(g /1) + (1-α)U(-1)ϕ(g/-1)              (2)

Note that the optimal decision-making method for a multiple
test consists of a collective decision rule g and a vector of optimal
predictor cutoff values.

Threshold utility

It should be mentioned that in fact a so-called threshold utility
function is assumed in the present paper. That is, the utilities
involved can be summarized by possibly different constants for
each of the four possible decision outcomes (i.e., fixed utilities). In
other words, although the utilities depend indirectly on the value of
the predictor cutoff Ri via the pass-fail decision, they do not
explicitly depend on Ri. For instance, the utility corresponding to
an incorrect pass decision on predictor test i (i.e., U(1/-1)) for an
unsuitable applicant who is far above Ri is the same as for an
incorrect pass decision for an unsuitable applicant who is
performing just above Ri. This will be true for both suitable
applicants and unsuitable ones. Considering the joint distribution of
the applicant predictor and criterion scores, it is also obvious that
the expected criterion score (and hence, the utility) of an applicant
who passed predictor test i will vary for different cutoff values of
Ri. Most current models of personnel selection utility, therefore,
follow the classical Brogden-Cronbach-Gleser suggestion
(Brogden, 1949; Cronbach and Gleser, 1965) to express the utility
explicitly as a function of the predictor cutoff Ri. 

However, like the model proposed in this paper, some models
of personnel selection utility assume that utility does not explicitly
depend on the value of Ri by adopting a threshold utility function
(e.g., Chuang et al, 1981; Petersen, 1976; Raju et al, 1991; Vos,
2001). Threshold utilities are also frequently assumed as being
appropriate in the context of educational decision making (e.g.,
Huynh, 1977; Lewis and Sheehan, 1990; van der Linden, 1987).
The main reason for defending threshold utility by all these
authors is that, referring to the previous given example, applicants
with scores on predictor test i far above Ri will hardly never be
qualified as unsuitable. Moreover, these authors assume that

pi
1 + pi

2

2
> 0.5

pi
2 = Pr ai = −1| s = −1{ } = f 2

−∞

Ri

∫ (xi )dxi



utilities corresponding to the correct pass and fail decisions (i.e.,
U(1/1) and U(-1/-1)) remain relatively stable for applicants with
predictor scores respectively far above and far below Ri. So, if it is
assumed that utilities are in fact only sensitive to changes in
predictor scores around the cutoff point Ri, the discontinuous
threshold function as a «jump» from one constant value to another
can be defended as a realistic model for personnel selection utility. 

Finally, it can still be remarked that threshold utilities are quite
convenient from a mathematical point of view. As will become
clear below, not the absolute utilities U(1/1), U(-1/1), U(-1/-1) and
U(1/-1) have to be specified for computing the optimal cutoff
points but only the so-called utility ratio U(1)/U(-1), that is, U(1)
relative to U(-1), has to be specified. 

Most texts on decision theory propose lottery methods for
empirically assessing the fixed values of the threshold utility
function (and hence, the utility ratio (e.g., Luce and Raiffa, 1957)).
Generally speaking, these methods use the desirability of
outcomes to scale the consequences of each pair of decision
outcome and true state. In the empirical example below, the
correct and incorrect pass decisions were perceived as respectively
the most and the least preferred outcomes from the economic
perspective of the company (e.g., hiring and training costs).

Qualified majority rule (QMR)

Quite often the collective decision rule g is given and not
necessarily optimal. However, it might still be possible to improve
the predictor-based selection process by controlling its optimal
cutoff point R*

i on each predictor test i (1 ≤ i ≤ n). Suppose now
that a qualified majority rule (QMR) is employed, which is
defined as follows: 

where N(-1) is the number of predictor tests failed by the
applicant, n is the number of predictor tests, and k (1/n ≤ k ≤ 1 and
kn is an integer) is the minimal proportion of predictor tests failed
by the applicant necessary for the collective decision to be -1
(rejection of applicant). The parameter k represents the collective
decision rule g, or the structure of the decision-making process.

For instance, a simple majority rule implies that an

applicant is rejected if and accepted otherwise. It 

should be noticed that the assumption of a QMR is plausible
because the optimal collective decision rule is always a qualified
majority one, as shown in Ben-Yashar and Nitzan (1997). The
problem we face is therefore:

Max Ri αU(1)ϕ(k /1) + (1-α)U(-1)ϕ(k /-1)

Given the structure k of collective decision-making and the
number n of predictor tests, the optimal cutoff point R*

i on
predictor test i (1 ≤ i ≤ n) of a multiple test is determined by the
following necessary condition:

(3)

where, 

The proof of the above assertion is given in Ben-Yashar and
Nitzan (1998). 

In a single test i, it obviously holds that n, and thus k, is equal
to 1 implying that Wi= 1. It follows then immediately from (3) that
the optimal cutoff point R+

i on predictor test i (1 ≤ i ≤ n) in this case
is determined by the following necessary condition: 

(4)

Note that (4) also follows immediately from (2) since ϕ(g/1)=
p1

i and ϕ(g/-1)= p2
i for a single test i (1 ≤ i ≤ n). 

The term Z which appears in equations (3) and (4) relates to the
environmental characteristics of the decision-making process, viz.,
the prior that an applicant is suitable and the fixed utilities
corresponding to the four possible outcomes for a predictor test. In
fact, Z represents the quality of the selection environment. If state of
nature 1 is superior to state of nature -1, the lower the Z, the higher
the quality of this environment. Z < 1 represents an environment of
relatively high quality. Z > 1 represents a relatively low-quality
environment. Z = 1 represents a neutral environment. In other
words, in this case there is no bias in favor of acceptance-rejection
and pass-fail decisions of applicants in terms of respectively the
priors of the two states of nature (i.e., α= (1-α)) and the net utilities
corresponding to the two states of nature (i.e., U(1)= U(-1)). 

The term Wi which appears in (3) and not in (4) is the ratio
between the marginal contribution of a test’s decisional skill to the
collective probability of making a correct decision in states of
natures –1 and 1. Wi depends on the three characteristics of the
decision-making process: structure (collective decision rule),
number of predictor tests composing a multiple test and a
performance measure of its predictor tests which depends on their
decisional skills. Note that when Wi= 1 the effect of a marginal
change in a test’s decisional skill is identical under the two states

of nature, that is,
. 

Relationship between optimal cutoff points for single and multiple tests

The optimal cutoff points for single and multiple tests in
predictor-based selection are usually different. Whether or not the
cutoff points for single tests are stricter than the cutoff points for
multiple tests depend on the characteristics of the decision-making
setting: the preferred decisional skills of the predictor tests, the
number of predictor tests and the collective decision rule. Our
main result specifies the condition that determines the relationship

αϕ g /1( )
αpi

1 =
αϕ g /−1( )

αpi
2

dpi
1

dRi

= −Z
dpi

2

dRi

Z =
(1− α )U(−1)

αU(1)

Wi =

αϕ (g /−1)

αpi
2

αϕ (g /−1)

αpi
1

=
pi

2

1− pi
1











kn−1
1− pi

2

pi
1











n−kn

dpi
1

dRi

= −Z
dpi

2

dRi

Wi ,

N(−1) ≥
n+1

2

k =
n+1
2n

g =
−1

1




n(−1) ≥ kn

otherwise,
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between the optimal cutoff points R+
i and R*

i for single and multiple
tests in predictor-based selection.

Theorem 1:

where                  

n is the fixed size of the number of predictor tests,

The parameter λi (1 ≤ i ≤ n) can be interpreted as the
bias/asymmetry of the tests’ decisional skills. 

For the proof of this theorem, we refer to Ben-Yashar and
Nitzan (2001).

The relationship between R*
i and R+

i depends on the relationship

between that depends on k. When

, i.e., when Wi > 1, from the perspective
of a multiple test there exists a relative

advantage to an increase in tests’ decisional skills in state of nature
–1. This induces an increase in p2

i and a decrease in p1
i by setting

the cutoff point R*
i higher than R+

i (recall that ). 

A similar argument can be used to rationalize the determination of
R*

i which is lower than R+
i when Wi < 1. 

Alternatively, the relationship between R*
i and R+

i depends on
the relationship between k and λi. When k > λi, i.e., the structure
of the multiple test is sufficiently lenient toward acceptance of
applicants, the decision-making system reacts by setting a cutoff
point higher than the one set on a single test i, namely, by setting
R*

i which exceeds R+
i. A similar argument can be used to rationalize

the inequality R*
i < R+

i when k < li. Notice that the difference
between R*

i and R+
i is basically due to the interchangeability

between Ri and k (Ben-Yashar and Nitzan, 1998).
To further clarify the intuition behind the theorem from a

personnel selection perspective and, in particular, why

, let us first show that in a neutral environment

λi approximates the optimal QMR for a multiple test consisting of
a large number of predictor tests. In a neutral environment where
Z= 1, the optimal QMR for predictor test i (1 ≤ i ≤ n) of a multiple
test, k*

i, is given by:

which follows immediately from the optimal QMR in the general
case that Z represents a bias/asymmetry in the environmental
characteristics of the decision-making process (i.e., Z ≠ 1): 

(5)

Ben-Yashar and Nitzan (1997) provides a proof of the above
assertion. Notice that

which converges to k*
i for a sufficiently large n. When p1

i = p2
i, λi =

0.5; that is, the optimal QMR for predictor test i (1 ≤ i ≤ n) of the
multiple test is the simple majority rule. 

When p1
i < p2

i , λi > 0.5; that is, the optimal QMR favours the
acceptance of applicants which is less likely to be the correct
decision. If the given collective decision rule, k, implies a bias that
optimally takes into account the difference between p1

i and p2
i, i.e., k=

λi, then from the perspective of a multiple test there is no incentive
to set Ri and, in turn, p1

i and p2
i that differ from those set in a single

test. In such a case R*
i = R+

i. If a collective decision rule k is faced
that implies a bias in favour of selection of applicants which is
stronger than the optimal bias corresponding to p1

i and p2
i, i.e., k > λi,

then an incentive exists to adjust p1
i and p2

i in order to eliminate the
discrepancy between k and λi. The adjustment requires an increase
of Ri which reduces p1

i and raises p2
i, and therefore in such a case R*

i

> R+
i. A similar argument can be used for the case k < λi, which

completes our intuitive explanation why

Disjunctive and conjunctive rules

A number of implications can be obtained from Theorem 1 in
special cases of our model, that is, when specific assumptions are

Ri
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<
Ri
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<
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made regarding n, k, and the relationship between the endogenous
decisional skills of predictor tests, p1

i and p2
i.

As already noted, the structure of the decision-making system
is represented by k, the minimal proportion of predictor tests in
favour of alternative -1 (fail decision), necessary for the collective
decision to be -1 (rejection of applicant). The following
discussion, however, pertains to the structure of the decision-
making system necessary for collectively reaching the decision 1
(acceptance of applicant). Hence kn= n means that the collective
rule is a disjunctive one (or polyarchic rule). That is, if one
predictor test decides in favour of alternative 1 (pass decision),
then the collective decision is 1 (acceptance). kn= 1 means that the
collective rule is a conjunctiveone (or hierarchic rule). That is, the
collective decision is 1 (acceptance) only when an applicant is
passed on all predictor tests. In fact, a conjunctive test can be
interpreted as a case of multiple hurdles in personnel psychology. 

By assumption, p1
i > (1-p2

i). Hence, for a conjunctive rule where
kn= 1,

By Theorem 1, in such a case R*
i < R+

i. In the extreme case of a

disjunctive rule where kn= n, and using p2
i > (1-p1

i) ,
and by Theorem 1, R*

i > R+
i.

The determination of optimal cutoff points for multiple tests
takes into account the collective decision rule, k, and the
interchangeability between k and the cutoff point Ri. No wonder
then that for a disjunctive rule where the collective decision rule is
most lenient toward acceptance of applicants, stricter cutoff points
are set relative to the cutoff points set on single tests. In contrast,
for a conjunctive rule, where the collective decision rule is least
lenient toward acceptance of applicants, more tolerant cutoff
points are set relative to the cutoff points set on single tests. 

In the symmetric case where there is no bias in favor of
acceptance-rejection and pass-fail decisions of applicants both in

terms of the collective decision rule, , and in terms of the

predictor cutoff which results in p1
i = p2

i, the same cutoff points are
set on single and multiple tests. Formally, since 

(6)

, we obtain that if a simple majority

rule is applied, that is, if and the cutoff point yields

identical decisional skills of the predictor tests, p1
i = p2

i, as

frequently assumed in the literature, then Wi= 1 and λi= .
By Theorem l, in such a case R*

i = R+
i.

Finally, suppose that [αU(1) = (1-α)U(-1)]. In this symmetric
situation (i.e., Z= 1), the optimal cutoff point R+

i on the single test
is set by maximizing its expected utility [αU(1)p1

i + (1-α)U(-1)p2
i]

implying that its average decisional skill is maximized

as well. In general, R+
i differs from R*

i.

However, regardless of whether R*
i > R+

i or R*
i < R+

i, in this
symmetric situation there is always a tendency that the average
decisional skills of the predictor tests of a multiple test are reduced
relative to the average decisional skills of a single test. 

Predictor-based selection using the Assessment Center method: an
illustration

To illustrate Theorem 1 for comparing the optimal cutoff points
R+

i and R*
i set on single and multiple tests, the Assessment Center

(AC) method is given as an empirical example. The term refers to
a procedure for evaluating the performance of individuals for such
purposes as selection or promotion of employees (e.g., Roos et al,
1997). In a typical Assessment Center the candidates applying for
a job participate in a variety of exercises that enable them to
demonstrate a particular (interpersonal) skill, knowledge, ability, or
competence, usually called job dimensions. These dimensions
resemble the future professional practice as much as possible. The
performance rating on each exercise is done by observers (called
assessors) who are carefully trained in order for the method to be
valid and reliable. Comparing these ratings with a pre-established
cutoff point, it is decided whether or not an applicant’s performance
on each specific exercise is satisfactorily enough to be passed.
Then the assessors combine the pass-fail decisions on all the
exercises and reach a collective decision (i.e., aggregation
procedure) for each applicant, that is, either accept or reject the
applicant for the job. 

In the current example, data were available for a large company.
The candidates applying for trainee positions in this company spent
two days undergoing assessment of their managerial potential by
the Assessment Center method. The following 15 exercises were
identified: Oral communication, planning and organization, written
communication, analysis, reading skills, judgment, initiative,
sensitivity, leadership, management identification, delegation,
technical knowledge, reflection, trouble shooting, and presentation.
The performance on each of the 15 exercises (i.e., the predictor
tests i) of the Assessment Center (i.e., the multiple test) was rated
by one and the same team of two carefully trained assessors on a
100-point scale running from 0 to 100. So, i was running from 1 to
15 and each predictor score xi was running from 0 to 100.

Since the company did not have any prior information of the
applicants, the a priori probabilities α and (1-α) of qualifying an
applicant’s true state (i.e., future job behavior) as respectively
suitable (s= 1) or unsuitable (s= -1) were set equal. Hence, α= (1-
α)= 0.5.

Furthermore, using the lottery method described in Luce and
Raiffa (1957), the positive net utility corresponding to a correct
pass decision (i.e., U(1)) was perceived by the company from an
economic perspective twice as large as the positive net utility
corresponding to a correct fail decision (i.e., U(-1)). Hence, since
the utility ratio U(1)/U(-1)= 2 and α= (1-α)= 0.5, it follows that
Z= 1/2. Since Z < 1, we are thus dealing with environmental
characteristics of the Assessment Center that can be characterized
as being of relatively high quality. 

In order to calculate the optimal cutoff point R*
i on each single

exercise i (1 ≤ i ≤ 15) of the Assessment Center by means of (3),
given the collective decision rule k and number n of exercises, we
finally still need to specify p1

i and p2
i as functions of Ri. It was

assumed that the test score distributions f1(xi) and f2(xi) for
exercise i (1 ≤ i ≤ 15) in the suitable and unsuitable group of
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applicants followed the normal distribution with mean µ1
i and µ2

i

(with µ2
i lower than µ1i) and standard deviation σ1

i and σ2
i,

respectively. Based on a sample of 127 candidates (69 accepted
and 58 rejected) applying for trainee positions in the past, it will
first be described how it was determined if an applicant was
qualified as either suitable (s= 1) or unsuitable (s= -1). Using this
information, the parameters µ1

i, µ2
i, σ1

i and σ2
i (1 ≤ i ≤ 15) can be

estimated straightforward.
First, depending on applicant’s performance, for each applicant

(both accepted and rejected ones) a test score xi (0 ≤ xi ≤ 100) was
assigned to each exercise i (1 ≤ i ≤ 15) by the team of two
assessors. Henceforth, the predictor score on exercise i will be
denoted as Xi. Next, for each selected applicant a criterion score yi

(i.e., applicant’s supervisor rating of current job performance
concerning exercise i on a 100-point scale) was determined on the
criterion variable Yi (1 ≤ i ≤ 15). Future job performance will be
denoted as the composite criterion variable Y. For the group of
selected applicants the following statistics could now be computed
for each exercise i (1 ≤ i ≤ 15): the means µXi

and µYi
, the standard

deviations σXi
and σYi

, and the correlation ρXiYi
(i.e., validity

coefficient) between Xi and Yi. Using these statistics, we then
computed for each rejected applicant the predicted criterion score
ŷi (i.e., future job behaviour on exercise i if the applicant would
have been selected) as a linear regression estimate on applicant’s
predictor score xi: 

ŷi= µYi
+ ρXiYi

(σYi
/σXi

) (xi–µYi
) (7)

Note that Brogden’s utility model (1949) also assumed the
above linear regression estimate for a single employee in which ŷi

then stands for the dollar value of an employee’s performance on
exercise i. 

Next, for each applicant (both accepted and rejected ones), a
composite criterion score y on Y was calculated by taking his or
her average criterion score over all 15 exercises. Finally, each
applicant was qualified as either suitable (s= 1) or unsuitable (s= -
1) by examining if applicant’s composite criterion score y was
above or below a pre-established cutoff point yc= 55 on the
criterion variable Y. The mean and standard deviation of f1(xi) and
f2(xi) could now be estimated straightforward for each exercise i (1
≤ i ≤ 15). 

The comparison of the optimal cutoff points R+
i and R*

i set on
single and multiple tests by using Theorem 1 will be illustrated for
the 9th exercise of leadership (i.e., i= 9). It should be emphasized,
however, that the calculation of the optimal cutoff points R+

i and R*
i

(and thus their comparison by using Theorem 1) for the other 14
exercises proceeds exactly in the same way. The parameters of
f1(x9) and f2(x9) were estimated as follows: µ1

9= 74.12, µ29= 50.68,
σ1

9= 10.79, and µ29= 11.66. The assumption of normality for f1(x9)
and f2(x9) was tested using a Kolmogorov-Smirnov goodness-of-
fit test. It turned out that the probabilities of exceedance were
respectively 0.289 and 0.254, showing a satisfactory fit
(significance level of 0.05) against the data. 

Thus, using the customary notation Φ(µ,σ) for the normal
distribution with mean µ and standard deviation σ, the cumulative
density is Φ(µ1

9,σ1
9) for the suitable and Φ(µ2

9,σ2
9) for the unsuitable

applicants on Exercise 9. It then follows that p1
9= 1–Φ((R9–µ1

9/σ
1
9)

(where Φ((R9–µ1
9/σ

1
9) now represents the lower tail probability of

the standard normal distribution evaluated at the cutoff point R9),
whereas p2

9= Φ((R9–µ2
9/σ

2
9). 

Relation between R*9 and R+
9 for given values of k and n 

R+
9 was computed by inserting

, and Z= 0.5

into (4) resulting in R+
9= 58.77. R+

9 was computed numerically
using a root finding procedure from the software package
Mathematica (Wolfram, 1996). 

In order to investigate the influence of more and less lenient
collective rules on the optimal predictor cutoff, R*

9 was computed
for k= 3/15, k= 8/15, and k= 13/15. Inserting first k= 3/15 and n=
15 into W9 and next W9 and Z = 0.5 into (3), and using again the
root finding procedure from Mathematica (Wolfram, 1996),
resulted in R*

9= 51.04, W9= 0.219, λ9= 0.224, p1
9= 0.984, and p2

9=
0.512. So, verifying Theorem 1 for k= 3/15 = 0.2 results in: 

R*
9= 51.04 < R+

9 = 58.77 ⇔ W9= 0.219 < 1 ⇔ k= 0.2 < λ9= 0.224

As can be seen from the above result, R*
9 < R+

9 implying that a
more tolerant cutoff point is set on Exercise 9 of the multiple test
composed of 15 exercises relative to the cutoff point set on the
single Exercise 9. This result can be accounted for that the
collective rule k = 3/15 is much less lenient toward selection of
applicants than the simple majority rule since kn = 3 < 8 (i.e.,
(15+1)/2). This ‘conjunctive like’ character of the collective rule
k= 0.2 also implies that p1

9 is so large (and thus, p2
9 so low) due to

only selecting applicants from which we can be pretty sure that
they will be qualified as suitable in their future job performance. 

Observe that Type I error (i.e., 1-p1
9= 0.016) is smaller than Type II

error (i.e., 1-p2
9= 0.448). This result is desirable from an economic

perspective of the company since the probability of selecting
applicants who turn out to be unsuitable in their future job performance
should be lower than the probability of rejecting applicants who would
have been suitable in their future job performance.

Next, for k= 8/15 = 0.533 (i.e., the simple majority rule), we
obtained the following results: R*

9= 62.43, W9= 1.995, λ9= 0.520,
p1

9= 0.861, and p2
9= 0.843. According to Theorem 1, a somewhat

stricter cutoff point R*
9 is now set on Exercise 9 of the multiple test

composed of 15 exercises relative to the cutoff point R+
9 set on the

single Exercise 9. This makes sense since the simple majority rule
is more lenient toward selection of applicants than the collective
rule k = 3/15. As a consequence of the more lenient character of
the simple majority rule, p1

9 and p2
9 were respectively decreased

and increased on Exercise 9 relative to the collective rule k = 3/15.
It can easily be verified that the simple majority rule meets the
requirement formulated in (6) for Exercise 9, since W9= 1.995 > 1
⇔ p1

9= 0.861 > p2
9 = 0.843. 

Finally, for k= 13/15 = 0.867, we obtained the following
results: R*

9= 73.36, W9= 14.31, λ9= 0.819,  p1
9= 0.528, and p2

9=
0.974. As can be verified from Theorem 1 (i.e., W9 >> 1), a much
stricter cutoff point R*

9 is now set on Exercise 9 of the multiple test
composed of 15 exercises relative to the cutoff point R+

9 set on the
single Exercise 9. This is because the collective rule k= 13/15 is
much more lenient toward selection of applicants than the simple
majority rule. This ‘disjunctive like’ character of the collective
rule k= 13/15 also accounts for the finding that p2

9 is so large (and
thus, p1

9 so low) since we only reject applicants from which we can
be pretty sure that they would be qualified as unsuitable in their
future job performance. 

dp9
1

dR9

= −Φ((R9 − µ9
1 ) / σ9

1 ),
dp9

2

dR9

= Φ((R9 − µ9
2 ) / σ9

2 )
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As an aside, it may be noted that the requirements of W9 < 1
and W9 > 1 for respectively a conjunctive and disjunctive rule
were met since W9= 0.032 for k= 1/15 (conjunctive rule) and W9=
54.76 for k= 1 (disjunctive rule). Notice also that the assumption
of p1

9 > (1-p2
9) is satisfied in all of the above values for k, implying

that a suitable applicant is more likely to be passed on Exercise 9
than an unsuitable applicant.

Relation between R*9 and R+
9 for given value of n= 15

R*
9 and k*

9 will be determined dependently for Exercise 9 and
given value of n = 15 by maximizing simultaneously the multiple
test’s common expected utility and subsequently comparing R*

9

with R+
9 again. First k9 is written as function of R9 according to (5),

then this function is inserted into (3) and solved for R*
9. In doing

so, according to the definition of a QMR, k9n must be rounded off
to the next highest integer. Using again a root finding procedure
from the software package Mathematica (Wolfram, 1996), yielded
the following results: R*

9= 60.47, k*
9= 7/15 = 0.467, W9= 1.380, λ9=

0.461, p1
9= 0.897, and p2

9= 0.799. As is clear from Theorem 1, a
somewhat stricter cutoff point R*

9 is now set on Exercise 9 of the
multiple test composed of 15 exercises relative to the cutoff point
R+

9= 58.77 set on the single Exercise 9. Note that the optimal
collective rule for Exercise 9 is only one exercise more lenient
toward selection of applicants than the simple majority rule; that
is, 9 out of 15 versus 8 out of 15 exercises must be passed at least
for being accepted, respectively. 

Using the optimal value of k*
9= 7/15 for Exercise 9, the optimal

predictor cutoffs R*
i may now be calculated on the other 14

exercises of the multiple test (i.e., 1 ≤ i ≤ 15; i ≠ 9) using (3) again.
This makes sense when one wants to be sure that anycase for
Exercise 9, the predictor cutoff and QMR are optimized
simultaneously. For instance, because Exercise 9 is perceived as
the most important exercise of the multiple test. 

Conclusions

This paper focuses on the comparison between the optimal
cutoff points set on single and multiple tests in predictor-based

selection. Since the characteristics of the two types of tests differ,
these cutoff points are usually different. The relationship between
them depends on the number of predictor tests composing a
multiple test, on its collective decision rule, and on the tests’
decisional skills. Our main result implies that the cutoff point for
a multiple test is stricter than the cutoff point set on a single test,
if the collective decision rule is sufficiently lenient toward
acceptance of candidates applying for a job, as in the extreme case
of a disjunctive rule. More generally, the structure of the decision-
making process applies stricter cutoff points for selection of
applicants if the marginal contribution of a test’s decisional skill to
the collective probability of rejecting unsuitable applicants is
larger than its marginal contribution to the collective probability of
accepting suitable applicants. 

Our results are applied to compare the predictor cutoffs
adopted in centralized selection systems and less informed
decentralized selection systems. Clearly, decentralized predictor-
based decision making in selection systems based on incomplete
information can be improved. This is illustrated in the context of
collective decision-making using the Assessment Center method
by a team of assessors regarding the acceptance or rejection of
candidates applying for trainee positions in a large company.

A possible line of future research would be, following the
classical Brogden-Cronbach-Gleser suggestion (Brogden, 1949;
Cronbach and Gleser, 1965), to express the utility function
rather as a function of the predictor cutoff Ri than as a threshold
utility like in the present paper. For instance, analogous to
Brogden’s pioneering utility equation (1949), by expressing the
utility for a single employee (i.e., the observed dollar value of
an employee’s job performance) as a linear regression on the
score of predictor test i (see also (7)). The choice of this utility
function would be more in line with current models of personnel
selection utility. 
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