
In recent years, the study of artifi cial neural networks (ANN) 
have aroused great interest in fi elds as diverse as biology, 
psychology, medicine, economics, mathematics, statistics and 
computer science. The main reason underlying this interest 
lies in the fact that ANN are general, fl exible, nonlinear tools 
capable of approximating any sort of arbitrary function (Hornik, 
Stinchcombe, & White, 1989). Due to their fl exibility as function 
approximators, ANN are robust methods in tasks related with 
pattern classifi cation, the estimate of continuous variables and 
time series forecasting (Kaastra & Boyd, 1996). In this latter case, 
ANN offer several potential advantages with respect to alternative 
methods —mainly ARIMA time series models— when it comes 
to dealing with problems concerning nonlinear data which do 
not follow a normal distribution (Hansen, McDonald, & Nelson, 
1999). The fi rst advantage lies in the fact that ANN are extremely 
versatile and do not require formal specifi cation of the model or 
the fulfi lment of a certain probability distribution for the data. 

Regarding the second advantage, Masters (1995) shows that ANN 
are capable of tolerating the presence of chaotic components in 
better conditions than most alternative methods. This capacity is 
particularly important due to the fact that many of the relevant time 
series possess systematic chaotic components.

In this way, ANN have been successfully applied in time series 
forecasting in different knowledge fi elds such as biology, fi nance 
and economics, energy consumption, medicine, meteorology and 
tourism (Palmer, Montaño, & Franconetti, 2008).

The most widely used neural network in time series forecasting 
has been the MLP (Multilayer Perceptron) (Bishop, 1995). However, 
recent studies have evidenced the excellent performance of other 
neural network models with respect to the MLP model in this type 
of task (Liu & Quek, 2007). As far as ANN are concerned, the 
literature has not established a general procedure of application of 
this technique in time series forecasting, but rather aspects in which 
there is no agreement between several authors have been presented 
(Nelson, Hill, Remus, & O’Connor, 1999). In this sense, this study 
offers a description and a comparison of the main ANN models that 
have been shown to be useful in time series forecasting, as well as 
a standard procedure for the practical application of ANN in this 
type of task. The models analyzed are: the Multilayer Perceptron 
(MLP), Radial Basis Function (RBF), Generalized Regression 
Neural Network (GRNN) and Recurrent Neural Networks (RNN).
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This study offers a description and comparison of the main models of Artifi cial Neural Networks 
(ANN) which have proved to be useful in time series forecasting, and also a standard procedure for 
the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base 
Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network 
(RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. 
A comparative study establishes that the error made by the four neural network models analyzed is less 
than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that 
the neural network models show a close fi t regarding their forecasting capacity. The model with the best 
performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst 
performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these 
limitations, and provide an orientation towards future research.

Redes neuronales artifi ciales aplicadas a la previsión de series temporales. El presente estudio ofrece 
una descripción y una comparación de los principales modelos de Redes Neuronales Artifi ciales (RNA) 
que han demostrado ser de utilidad en la previsión de series temporales, así como un procedimiento 
estándar para la aplicación práctica de las RNA en este tipo de tareas. Se analizan los modelos Perceptrón 
Multicapa (MLP), Funciones de Base Radial (RBF), Red Neuronal de Regresión Generalizada (GRNN) 
y Redes Neuronales Recurrentes (RNN). Para ello, se ha utilizado una serie temporal compuesta por 244 
puntos temporales. El estudio comparativo establece que el error cometido por los cuatro modelos de 
red analizados es inferior al 10%. De acuerdo con los criterios de interpretación de este desempeño, se 
puede concluir que los modelos de red presentan un alto ajuste en su capacidad de previsión. El modelo 
con mejor rendimiento es el RBF, seguido del RNN y MLP. El modelo GRNN es el que presenta peor 
rendimiento. Finalmente, se analizan las ventajas y limitaciones de las RNA, las posibles soluciones a 
tales limitaciones, así como una orientación de las líneas de investigación futuras.



ARTIFICIAL NEURAL NETWORKS APPLIED TO FORECASTING TIME SERIES 323

  Method

Data

In this study we used the data concerning the total monthly 
electrical energy consumption (MWh unit) in the Balearic Islands 
between January 1983 and April 2003, obtaining a time series made 
up of 244 time points (from x

1
 to x

244
). In this sense, the forecast 

of electrical consumption constitutes one of the most paradigmatic 
problems in the fi eld of time series analysis (Pao, 2006).

Figure 1A shows the graphical representation of the original 
time series. A marked seasonal nature and an increasing linear 
trend can be observed. A review of the literature shows there is no 
agreement as to the need to eliminate the systematic components 
in time series when ANN are applied. Thus, some authors suggest 
ANN can adequately adjust both seasonality and the linear trend of 
a time series, based on the fact that ANN are capable of modelling 
any arbitrary function (Franses & Draisma, 1995). Other authors 
claim that despite being universal function approximators, ANN can 
benefi t from the previous elimination of systematic components, 
thereby focusing on learning the most complex aspects of the series 
(Nelson, Hill, Remus, & O’Connor, 1999). More recent empirical 
studies (Palmer, Montaño, & Sesé, 2006) show that the predictive 
performance of ANN improves if the systematic components have 
been previously eliminated from the time series.

In this way, following the traditional procedures of preprocessing 
time series, a logarithmic transformation was applied and two 
differentiations, one of order 1 and the other of order 12. Figure 
1B shows the time series after applying these transformations.  

Modelling a univariate time series using ANN is generally 
carried out using a certain number of lagged terms in the series 
as the input and the forecasts as the output (Bishop, 1995). 
Following the methodology established by Masters (1993) as to 
the application of ANN in time series and bearing in mind that the 
data analyzed are monthly, for this study we carried out a forecast 
of each time point from the 12 lagged terms that would make up 
the previous year. Therefore, all the ANN models designed in this 
study are characterised by having 12 input neurons and one output 
neuron. After applying the transformations and the outline given 
in Figure 2, we found 219 input-output patterns (each one with 12 
input values and one output value).

Then, the set of patterns was divided into three groups. The 
training group, made up of the fi rst 147 patterns; the validation 
group, made up of the following 36 patterns; and the test group, 
made up of the last 36 patterns.

Multilayer perceptron

A Multilayer Perceptron or MLP model is made up of a layer 
N of input neurons, a layer M of output neurons and one or more 
hidden layers; although it has been shown that for most problems 
it would be enough to have only one layer L of hidden neurons 
(Hornik, Stinchcombe, & White, 1989) (see Figure 3A). In this 
type of framework, the connections between neurons always feed 
forwards, that is, the connections feed from the neurons in a certain 
layer towards the neurons in the next layer.

The mathematical representation of the function applied by the 
hidden neurons in order to obtain an output value b

pj
, when faced 

with the presentation of an input vector or pattern X
p
: x

p1
, …, x

pi
, 

…, x
pN

, is defi ned by:

 (1)

where f
L
 is the activation function of hidden neurons L, θ

j
 is the 

threshold of hidden neuron j, w
ij
 is the weight of the connection 

between input neuron i and hidden neuron j and, fi nally, x
pi
 is the 

input signal received by input neuron i for pattern p. 
As far as the output of the output neurons is concerned, it 

is obtained in a similar way as the neurons in the hidden layer, 
using:

ŷpk = fM θk + vjk ⋅bpj
j=1

L
∑

⎛

⎝
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⎞

⎠
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 (2)

where ŷ
pk

 is the output signal provided by output neuron k for 
pattern p, f

M
 is the activation function of output neurons M, θ

k
 is 

the threshold of output neuron k and, fi nally, v
jk
 is the weight of the 

connection between hidden neuron j and output neuron k. 
In a general way, a sigmoid function is used in the hidden layer 

neurons in order to give the neural network the capacity of learning 
possible nonlinear functions, whereas the linear function is used 
in the output neuron in the event of an estimation of a continuous 
variable.

MLP network training is of the supervised type and can be 
carried out using the application of the classical gradient descent 
algorithm (Rumelhart, Hinton, & Williams, 1986) or using 
a nonlinear optimization algorithm which, as in the case of the 
conjugated gradients algorithm (Battiti, 1992), makes it possible to 
considerably accelerate the convergence speed of the weights with 
respect to the gradient descent algorithm.

Radial Basis Functions

Radial Basis Functions or RBF models (Broomhead & Lowe, 
1988) are made up of three layers just like the MLP network 
(see Figure 3B). The peculiarity of RBF lies in the fact that the 
hidden neurons operate on the basis of the Euclidean distance that 
separates the input vector X

p
 from the weights vector W

j
 which is 

stored by each one (the so-called centroid), a quantity to which a 
Gaussian radial function is applied, in a similar way to the kernel 
functions in the kernel regression model (Bishop, 1995).

Out of the most widely used radial functions (gaussian, 
quadratic, inverse quadratic, spline), in this study the gaussian was 
applied as the activation function of the hidden neurons on input 
vector X

p
, in order to obtain an output value b

pj
:

bpj = exp
xpi – wij( )

i=1

N

∑
2

2σ2

–[ ]
 (3)

If input vector X
p
 coincides with the centroid W

j
 of neuron j, this 

responds with a maximum output (the unit). That is to say, when 
the input vector is located in a region near the centroid of a neuron, 
this is activated, indicating that it recognises the input pattern; if 
the input pattern is very different to the centroid, the response will 
tend towards zero.
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The normalization parameter σ (or scale factor) measures the 
Gaussian width, and would equal the radius of infl uence of the 
neuron in the space of the inputs; the greater σ, the larger the 
region dominated by the neuron around the centroid.

The output of the output neurons is obtained as a linear combination 
of the activation values of the hidden neurons weighted by the weights 
that connect both layers in the same way as the mathematical expression 
associated with an ADALINE network (Widrow & Hoff, 1960):
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Figure 1. Graphic representation of the original and transformed time series
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 (4)

Like the MLP network, RBF make it possible to carry out 
modelling of arbitrary nonlinear systems relatively easily and they 
also constitute universal function approximators (Hartman, Keeler, 
& Kowalski, 1990), with the particularity that the time required 
for their training is usually much more reduced. This is mainly 
due to the fact that RBF networks constitute a hybrid network 
model, as they incorporate supervised or non supervised learning 
in two different phases. In the fi rst phase, the weight vectors or 
centroids associated with the hidden neurons are obtained using 
non supervised learning through the k-means algorithm. In the 
second phase, the connection weights between the hidden neurons 
and the output ones are obtained using supervised learning through 
the delta rule of Widrow-Hoff (1960).

Generalized Regression Neural Network

The Generalized Regression Neural Network or GRNN 
(Specht, 1991) is made up of four layers of neurons: input layer, 
pattern layer, summation layer and output layer (see Figure 3C). 
As in the rest of the models described, the number of input neurons 
depends on the number of predictor variables established. This 
fi rst layer is connected to the second, the pattern layer, where each 
neuron represents a training pattern X

j
 and its output is a measure 

of the distance of the input pattern from each of the stored training 
patterns. Each neuron in the pattern layer is connected with each of 
the two neurons in the summation layer: the S-summation neuron 
and the D-summation neuron. The S-summation neuron calculates 
the sum of the weighted outputs in the pattern layer, whereas the 
D-summation neuron calculates the non-weighted outputs of the 
pattern layer. The weight of the connection between neuron j of the 
pattern layer and the S-summation neuron is y

js
, the desired output 

value corresponding to training pattern X
j
. For the D-summation 

neuron, the weight of the connection is the unit. The output layer 
simply divides the output of the S-summation neuron by the output 
of the D-summation neuron, giving the prediction value for an 
input vector or pattern X

p
: x

p1
, …, x

pi
, …, x

pN
, using the following 

expression:

 (5)

where ŷ
pk

 is the output signal provided by output neuron k for input 
pattern X

p
, b

pj
 is the output signal of hidden neuron j after applying 

a radial function in the same way as in expression (3) and y
js
 is the 

desired output of output neuron k for training pattern X
j
. 

The GRNN model allows us to carry out an estimate of the 
joint probability density function f(x, y) between a set of predictor 
variables x and a set of response variables y. This is closely related 
to the RBF network model and, just like this one, is based on kernel 
regression models. The main advantage of the GRNN model with 
respect to the MLP model is that it does not require an iterative 
training process. What is more, it can approximate any arbitrary 
function just like the previous models described, by adjusting the 
function directly from the training data.

Recurrent neural networks

Recurrent neural networks or RNN are especially useful in 
situations in which it is desired to represent the time relationships 
that may be established between the inputs and outputs of the 
neural network (Elman, 1990). In this type of network one layer 
of neurons possesses recurrent connections, that is, the outputs of 
the neurons are temporarily stored and then sent as input signals to 
the same neurons or to other neurons in the neural network. This 
process is represented in Figure 4.

The time delay operator Z-1 makes it possible to store the 
output signals y obtained in the previous moments n of neuron j. 
In this way, a short term memory of the previous activation values 
generated by the neuron is generated. As far as the time parameter 
μ is concerned, it determines the weight or trace memory of the 
previous output signals y of neuron j. Thus, the output of neuron 
j is a function of the input signals x

i
 of neurons N in the layer 

immediately before and of the previous output signals y of this 
same neuron j weighted by the time parameter. The print or trace 
memory of the previous output signals decreases exponentially:

 (6)

where 0 < μ < 1
Recurrent neural networks, just like the previous models, 

possess a framework similar to an MLP model where one of the 
neural layers has recurrent connections. In this study we used the 
Elman network (Elman, 1990) in which the neurons in the hidden 
layer show recurrent connections. By this means, the neurons in 
this layer receive signals from themselves from previous moments 
and signals from the neurons in the input layer. As Jehee & Lee 
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(1996) point out, this type of recurrence is especially useful for their 
application in time series forecasting. The recurrent connections 
stored by the lagged signals of the neurons are usually represented 
by a special layer of neurons called the context layer of neurons 
(see Figure 3D).

Concerning training this type of neural network, the connections 
that appear in the fi gure with a continuous line are modifi ed 
following supervised learning just as in the case of the MLP 
model, whereas the connections that appear with a discontinuous 
line (connections towards the contextual layer of neurons) are 
fi xed at a constant value equal to 1 and are not susceptible to 
modifi cation.

Measure of fi t

The most widely used measure of fi t in the fi eld of time series 
forecasting is the Mean Absolute Percentage Error (or MAPE) due 
to the fact that it is easy to interpret —it is interpreted in terms of 
percentage error— and does not depend on the measure scale of 
the variable (Witt & Witt, 1992):

 (7)
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where y
pk

 is the desired value for output neuron k belonging to 
pattern p, ŷ

pk
 is the output signal of output neuron k for pattern p 

and P is the number of total patterns analyzed.
Nevertheless, the distribution of the percentage errors is found 

limited between 0 and +∞; and in most cases this distribution has 
anomalous values or outlier values that are skewed to the right, 
leading to asymmetries (Smith & Sincich, 1988). As far as the 
MAPE is concerned, it does not constitute a resistant location 
index as it is based on the calculation of the arithmetic mean of 
the percentage errors and, therefore, is sensitive to the presence of 
outlier values.

With the purpose of overcoming the limitations presented by the 
MAPE as a measure of fi t in time series forecasting, in this study 
not only did we calculate the arithmetic mean of the distribution 
of the percentage errors, but we also obtained a resistant location 
index, the M-estimator of Huber (Huber, 1975).

Designed neural network models

In accordance with the description made, a set of MLP, RBF, 
GRNN and RNN network models were designed, from the 
manipulation of a series of parameters. In the case of the MLP 
models, different seed values were used for the initialization of 
the weights, as well as a number (between one and 4) of hidden 
neurons. The learning algorithm used was the conjugated gradients 
one (Battiti, 1992) and as an activation function of the hidden and 
output neurons, the sigmoid and linear ones, respectively. As far as 
the different RBF models are concerned, they were constructed by 
varying the number of centroids, between 5 and 25, and the value 
of the normalization parameter, between 0.2 and 1.5. In the case 
of the GRNN models, the only parameter that was manipulated 
was the normalization parameter with values comprising between 
0.05 and 1. Finally, the RNN models, with recurrent connections 
in the hidden layer, were constructed by manipulating the same 
parameters as in the case of the MLP models.

For each of the four types of network model designed, the one 
that showed the lowest mean percentage error (MAPE, calculated 
using the M-estimator of Huber) with the validation group, was 
chosen.

Results

Table 1 shows the mean percentage error calculated using 
the M-estimator of Huber for each of the models selected in 
the validation phase, for the three sets of data. The value of the 
corresponding arithmetical mean appears in parenthesis.

It can be seen that the generalization error committed by each of 
the four network models analyzed and estimated from the test set, is 
less than 10%. In accordance with the interpretation criteria for the 
MAPE value established by Lewis (1982), the four neural network 
models can be considered to have highly accurate forecasting. The 
model with the best performance with the test group is the RBF, 
followed by the RNN and MLP. The GRNN model is the one with 
the worst performance with a difference of 2.49% compared to the 
model with the best performance, the RBF.

As far as the distribution of errors is concerned, it has been 
seen that in most cases they have outlier values, which is why 
the arithmetic means always provides a higher value than the 
M-estimator value.

Discussion

ANN can be considered general, fl exible, nonlinear statistical 
techniques capable of learning complex relationships between 
variables in a multitude of fi elds of study. This technique has a 
series of advantages compared to classical statistical models. 
First of all, ANN do not depend on the fulfi lment of statistical 
assumptions such as, for instance, the type of relationship between 
variables or the type of data distribution. Secondly, as universal 
function approximators, they are capable of fi tting linear and 
nonlinear functions without the need for knowing the shape of the 
underlying function a priori.

With respect to the limitations and criticisms received, 
ANN lack a theoretical foundation and a systematic procedure 
for the construction of the model, comparable to the classical 
approximations such as the Box-Jenkins methodology (Box 
& Jenkins, 1976). As a result, the construction phase of the 
model involves the experimental selection of a wide number 
of parameters by trial and error. The use of classical statistical 
procedures to determine the parameters of a neural network in 
time series forecasting could be useful in order to overcome this 
limitation (Hansen, McDonald, & Nelson, 1999). Nevertheless, 
the most criticised aspect in the use of ANN focuses on the study 
of the effect and signifi cance of the input variables of the model, 
due to the fact that the value of the parameters obtained by the 
network does not possess a practical interpretation, unlike classical 
statistical models. As a consequence, ANN have been presented 
to the user as a ‘black box’ as it is not possible to analyze the role 
played by each of the input variables in the forecast carried out. 
However, in recent years, different methods aimed at interpreting 
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Figure 4. Artifi cial neuron with a recurrent connection

Table 1
Percentage error for each of the models selected in the validation phase for the 

three sets of data: M-estimator of Huber (and arithmetic mean)

Training Validation Test

MLP
3.88

(4.52)
3.63

(4.65)
7.46

(8.47)

RBF
3.43

(3.96)
4.52

(5.06)
7.04

(8.27)

GRNN –
4.73

(5.42)
9.53

(10.17)

RNN
3.40

(3.85)
4.25

(5.00)
7.10

(8.10)
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the learning carried out by an ANN have been proposed. Most of 
these procedures are included in the so-called sensitivity analysis 
and have been applied satisfactorily in several fi elds of knowledge 
(Montaño & Palmer, 2003).

Among its contributions, this study has offered a description of 
the main ANN models aimed at time series forecasting. This line 
of research is clearly lacking, judging by the number of studies 
published in the context of Psychology (Palmer, Montaño, & 
Franconetti, 2008) in comparison with other types of application 
of this technique in fi elds such as, for instance, the classifi cation 
and prediction of patterns (Pitarque, Ruiz, & Roy, 2000), the 
imputation of missing data (Navarro & Losilla, 2000) or survival 
analysis (Palmer & Montaño, 2002).

This work aims to suggest that in all the fi elds of Psychology 
where classical time series models have been applied, ANN models 
could also be applied in a satisfactory way. By way of illustration, 
the fi elds of application could be about the use and abuse of 
psychoactive substances (Sears, Davis, Guydish, & Gleghorn, 
2009), psychophysiological activity (Janjarasjitt, Scher, & Loparo, 
2008), criminal or violent behaviour (Pridemore & Chamlin, 2006), 
assessment of psychological intervention programmes (Tschacher 
& Ramseyer, 2009), teaching methodologies (Escudero & Vallejo, 
2000) or psychopathology (Valiyeva, Herrmann, Rochon, Gill, & 
Anderson, 2008).

Concerning the procedure proposed for the application of ANN 
in time series forecasting, we show the convenience, against the 
opinion of some authors, of carrying out preprocessing of the 
time series so as to eliminate the systematic components in them. 
Besides, we propose an improvement of the most widely used 
performance index to assess time series forecasting models, MAPE 
(Witt & Witt, 1992), through the calculation of an M-estimator 
rather than the arithmetic mean.

With respect to the overall performance of the four models 
analyzed, it is clear that ANN are fl exible, effective tools for all 
researchers interested in modelling the behaviour of time series. 
As far as the comparison between the models is concerned, the 
RBF, RNN and MLP models obtained the best results, whereas 
the GRNN networks obtained the worst results. This result could 
be due to the high dependency of the GRNN model as far as the 
training data selected are concerned.

Future lines of research should be aimed at overcoming the 
limitations mentioned in relation to the use of ANN, that is, the 
selection of the parameters related with the construction of the model 
and the analysis of the effect or signifi cance of the input variables 
in the forecast carried out. This work points out some possible 
directions to move in as far as this is concerned. Finally, it is also 
necessary to apply ANN to other databases in order to fi nd out the 
degree of generalization of the results obtained in this study.
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