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Multiple regression analysis is one of the major methods of 
statistical analysis in applied research across many scientifi c fi elds. 
For descriptive purpose, the sample squared multiple correlation 
coeffi cient, usually denoted by R2, is commonly employed to 
assess the strength of association between the response variable 
and the predictor variables in many applications. See Bobko (2001) 
and Cohen et al. (2003) for operational guidelines and practical 
implications in areas of management and behavioral sciences. A 
primary concern of regression analysis is the conception of the two 
distinct scenarios of fi xed (conditional) and random (unconditional) 
modeling formulations that ultimately lead to different inferential 
procedures. One must have a clear understanding of the respective 
setups and how they can be utilized before the issues involved in 
the construction of an appropriate regression model can be fully 

explained. Notably, Sampson (1974) gave an excellent and thorough 
description of the two modeling formulations in which the random 
setting adopts the convenient assumption that all variables have a 
joint multivariate normal distribution. The procedures for power 
calculation, interval estimation, and sample size determination 
under the fi xed regression models are well known; see Murphy and 
Myors (2004) and Smithson (2003) and the references therein for 
further details. However, the statistical properties of corresponding 
inferential procedures are more complex under the random model. 

Although the underlying normality assumption provides a 
convenient and useful setup, the resulting probability density 
function of the sample squared multiple correlation coeffi cient R2 is 
notoriously complicated in form. The complexity incurs numerous 
investigations to give various expressions, approximations and 
computing algorithms for the distribution of sample squared 
multiple correlation coeffi cient. See Johnson et al. (1995, Chapter 
32) and Stuart and Ord (1994, Chapter 16) for further details. 
For the purpose of point estimation, it is well known that R2 is 
a positively biased estimator of the population squared multiple 
correlation coeffi cient ρ2. To reduce the bias, several shrinkage 
estimators have been suggested in the literature. See Raju et al. 
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Abstract Resumen

Background: Effect size reporting and interpreting practices have been 
extensively recommended in academic journals when analyzing primary 
outcomes of all empirical studies. Accordingly, the sample squared 
multiple correlation coeffi cient is the commonly reported strength of 
association index in practical applications of multiple linear regression. 
Method: This paper examines the sample size procedures proposed by 
Bonett and Wright for precise interval estimation of the squared multiple 
correlation coeffi cient. Results: The simulation results showed that their 
simple method for attaining the desired precision of expected width 
provides satisfactory results only when sample sizes are large. Moreover, 
the suggested sample size formula for achieving the designated assurance 
probability is inaccurate and problematic. Conclusions: According to these 
fi ndings, their sample size procedures are not recommended.

Keywords: Assurance probability, expected width, squared multiple 
correlation.

Requisitos del tamaño de la muestra para la estimación por intervalo de 
la fuerza de asociación de tamaños de efecto en análisis de regresión. 
Antecedentes: la práctica al presentar e interpretar el tamaño de efecto 
ha sido recomendada extensivamente en revistas académicas al analizar 
resultados primarios en estudios empíricos. En consecuencia, el coefi ciente 
de correlación múltiple al cuadrado de la muestra es el índice de fuerzas de 
asociación que se presente con más frecuencia en aplicaciones prácticas de 
regresión lineal múltiple. Método: este trabajo examina el procedimiento 
del tamaño de la muestra que Bonett y Wright propusieron para una precisa 
estimación por intervalos de coefi ciente de correlación múltiple al cuadrado. 
Resultados: el resultado de esta simulación señala que su método simple 
para alcanzar la deseada precisión de la amplitud esperada proporciona 
el resultado satisfactorio solamente cuando el tamaño de la muestra sea 
extensivo. Además, la fórmula del tamaño de la muestra sugerida para 
lograr la designada probabilidad garantizada es inexacta y problemática. 
Conclusiones: de acuerdo con estos descubrimientos, no se recomienda el 
procedimiento del tamaño de la muestra.

Palabras clave: probabilidad garantizada, anchura esperada, correlación 
múltiple al cuadrado.
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(1997), Shieh (2008), and Yin and Fan (2001) for further details. 
On the other hand, Helland (1987) suggested a simple approximate 
confi dence interval using ordinary F distribution and the accuracy 
of the approximation is remarkably good for practical purposes. 
Moreover, exact confi dence interval procedures were presented in 
Mendoza and Stafford (2001), Shieh (2006), Shieh and Kung (2007), 
and Steiger and Fouladi (1992). Unlike the approximate method, the 
exact approach employs an inversion technique of R2 distribution 
and is called the “cumulative distribution function” pivotal 
method in Casella and Berger (2002, Section 9.2.3) and Mood, 
Graybill and Boes (1974, Section 4.2). Therefore, the calculations 
of exact confi dence intervals for ρ2 are methodologically and 
computationally more involved than those for the standard interval 
procedures of treatment contrasts in ANOVA. Consequently, the 
calculation of confi dence intervals requires a special purpose 
computer program for performing the necessary computations of 
the probability distribution function of R2. 

Instead of a direct accept-or-reject conclusion in a simple 
hypothesis test, confi dence intervals are more informative about 
location and precision of the statistic, and they should be the best 
reporting strategy according to the recommendations of Wilkinson 
and the American Psychological Association Task Force on 
Statistical Inference (1999), as well as the Publication Manual 
of the American Psychological Association (2009). In addition, 
the editorial guidelines and methodological recommendations of 
several prominent educational and psychological journals stress 
that it is necessary to include some measures of effect size and 
confi dence intervals for all primary outcomes. For example, see 
Alhija and Levy (2009), Dunst and Hamby (2012), Fritz, Morris 
and Richler (2012), Odgaard and Fowler (2010), and Sun, Pan 
and Wang (2010). The emphasis on reporting effect sizes and 
confi dence intervals implies that researchers should plan studies 
not only to select practically meaningful effect size indices but also 
to have suffi ciently accurate interval estimates of effect sizes. Thus 
it is prudent to facilitate this research practice by determining the 
necessary sample sizes to satisfy the desired precision of interval 
estimation in the planning stage of research design. 

It follows from the general review of effect size estimates in 
Breaugh (2003), Ferguson (2009), Fern and Monroe (1996), Kirk 
(1996), Richardson (1996), and Vacha-Haase and Thompson (2004) 
that the squared multiple correlation coeffi cient is one the most 
commonly used strength of association measures in social science 
research. Accordingly, there is a considerable recent literature 
pertaining to the sample size determinations for precise interval 
estimation of squared multiple correlation coeffi cient within the 
linear regression framework. Due to the complexity of the exact 
probability density distribution of R2, the calculations of required 
sample size are extremely complicate to perform both effi ciently 
and reliably. Therefore, Kelley (2008) and Krishnamoorthy and Xia 
(2008) utilized the simulation-based or trial-and-error approach 
to circumvent the diffi culties in calculating the necessary sample 
sizes for adequate interval precision with respect to the control of 
expected width, and to the assurance probability of interval width 
within a designated value. Both computer programs and tabular 
sample sizes are provided in Kelley (2008) and Krishnamoorthy 
and Xia (2008) for constructing precise confi dence intervals under 
the selected precision criterion. Although the diffi culty of exact 
sample size computations has been avoided in the Kelley (2008) 
and Krishnamoorthy and Xia (2008), their suggested simulation 
procedures are still computationally intensive. 

In view of the importance of accurate sample size formulas for 
a precise confi dence interval of the squared multiple correlation 
coeffi cient and computational demands of the current methods, 
Bonett and Wright (2011) proposed a simple procedure of 
approximating the sample size requirement for obtaining a squared 
multiple correlation confi dence interval with desired precision. The 
suggested sample size formula is derived from the approximate 
confi dence interval of the squared multiple correlation coeffi cient 
using the asymptotic normal distribution of the sample multiple 
correlation coeffi cient. It is noted in Bonett and Wright (2011) that 
the resulting technique is attractive in its simplicity and is surprising 
accurate for controlling the expected width for the nearly-exact 
confi dence intervals of Helland (1987). Moreover, they also 
presented a closed-form sample size formula for computing the 
necessary sample size that will yield a confi dence interval that is 
not wider than the designated bound with a nominal assurance 
probability. Numerical illustration and practice recommendation 
are described to illustrate and enhance the practical usefulness of 
their procedures. 

Despite the appealing advantage of simplicity for the sample 
size procedures of Bonett and Wright (2011), two obvious caveats 
in their arguments and expositions should be noted. First, it is 
well known that the distribution of sample squared multiple 
correlation is generally skewed. Hence, the equidistant confi dence 
interval derived from the asymptotic normal distribution for 
transformation of sample squared multiple correlation is therefore 
presumably inappropriate and is not likely to be accurate. Second, 
the justifi cation for the accuracy of their formulas is only based 
on the computed relative precision of confi dence limits for the 
approximate interval procedure of Helland (1987) under selected 
values of model confi gurations. Accordingly, the lack of rigorous 
assessment of the accuracy of sample size formulas through 
comprehensive simulation study is an obvious drawback of 
the current explication in Bonett and Wright (2011). The actual 
performance of the suggested sample size procedures should 
be extensively evaluated before it can be adopted as a general 
methodology in practice. To this end, the article aims to conduct 
detailed numerical investigations to assess the adequacy of the 
sample size methods in Bonett and Wright (2011). We respectively 
suggest that our article serves as an updating and clarifi cation of 
their recent work. 

The remainder of the paper is organized in the following 
manner. In the next section, the fundamental results of the 
approximate interval procedure of Helland (1987) and sample size 
techniques for precise confi dence intervals of Bonett and Wright 
(2011) are described. Then, Monte Carlo simulation studies were 
performed to appraise the accuracy the sample size formulas under 
a variety of model and precision confi gurations. The accuracy 
of the approximate techniques of Bonett and Wright (2011) are 
evaluated by the computed Helland’s (1987) confi dence intervals 
corresponding to the control of expected width, and to the tolerance 
probability of interval width within a designated value. Finally, 
some concluding remarks are provided. 

Confi dence intervals and sample size calculations 

Consider the standard multiple linear regression model with 
criterion variable Y and p predictor variables (X

1
, ..., X

p
) for N 

independent sets of these jointly multivariate normal variables. 
The sample squared multiple correlation coeffi cient R2 is a 
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prevailing strength of association effect size measure for the 
population squared multiple correlation coeffi cient ρ2 between the 
criterion variable and the set of predictor variables. For practical 
use, Helland (1987) presented an approximate interval estimation 
procedure for ρ2. Specifi cally, the approximate 100(1 − α)% 
confi dence interval for ρ2 is 

ˆ L
2 , ˆU

2( )
 (1)

where

 
ˆL

2
=

N p 1( )R2 1 R2( ) pFL
N p 1( ) R2 + 1 R2( )FL{ }

, ˆU
2
=

N p 1( )R2 1 R2( ) pFU
N p 1( ) R2 + 1 R2( )FU{ }

,

F
L
 is the 100(1 – α/2) percentile of the F distribution with ν

L
 and 

N – p – 1 degrees of freedom, and ν
L
 = {(N – p – 1)ρ̂2

L
 + p}2/{N – 1 – 

(N – p – 1)(1 – ρ̂2
L
)2}, whereas F

U
 is the 100(α/2) percentile of the F 

distribution with ν
U
 and N – p – 1 degrees of freedom, and ν

U
 = {(N 

– p – 1)ρ̂2
U
 + p}2/{N – 1 – (N – p – 1)(1 – ρ̂2

U
)2}. Essentially, since F

L
 

and F
U
, or ν

L
 and ν

U
 also depend on the confi dence limits ρ̂2

L
 and ρ̂2

U
, 

the optimal values of ρ̂2
L
 and ρ̂2

U
 in Equation 1 need to be found by a 

simple iterative search. It follows from the numerical comparison 
with the exact results, Helland (1987) concluded that the accuracy 
of the approximate interval estimates is surprisingly good because 
the error is negligible for practical purposes. Moreover, the 
approximate confi dence intervals for ρ2 can be computed with the 
SAS procedure PROC CANCORR (SAS Institute, 2011). 

To ensure the precision of Helland’s (1987) confi dence intervals 
for the squared multiple correlation coeffi cient, two methods were 
considered in Bonett and Wright (2011). The width of the 100(1 – 
α)% confi dence interval (ρ̂2

L
, ρ̂2

U
) is denoted by W = ρ̂2

U
 − ρ̂2

L
. One 

formula gives the minimum sample size, such that the expected 
confi dence interval width E[W] is within the designated bound. The 
other provides the sample size needed to guarantee, with a given 
assurance probability P{W ≤ ω}, that the width of a confi dence 
interval will not exceed the planned range. Specifi cally, for a given 
value ρ2 = ρ̃2, the sample size N

EW
 needed for the expected width 

of a 100(1 – α)% confi dence interval (ρ̂2
L
, ρ̂2

U
) to fall within the 

designated bound ω is the minimum integer N such that 

N 16 2 z /2 / ln(e){ }
2
+ p + 2,  (2)

where z
α/2

 is the upper 100(α/2) percentile of the standard normal 
distribution and ẽ = (1 − ρ̃2 + ω/2)/(1 − ρ̃2 − ω/2). On the other 
hand, for a given value ρ2 = ρ̃2, the sample size N

AP
 required to 

guarantee with a given assurance probability (1 − γ) that the width 
of a 100(1 – α)% confi dence interval (ρ̂2

L
, ρ̂2

U
) will not exceed the 

planned range ω is the smallest integer N such that 

 
N 16 U

2 z /2 / ln(e){ }
2
+ p + 2,

 (3)

where ρ̃2
U
 = 1 – exp[ln(1 – ρ̃2) + z

γ
{4ρ̃2/(N – p – 2)}1/2], and z

γ
 is the 

upper 100·γ percentile of the standard normal distribution. Bonett 
and Wright (2011) suggested repeating the calculations of N and ρ̃2

U
 

two or three times for better approximation. Analytical arguments 
and theoretical justifi cations can be found in Bonett and Wright 

(2011). It is clear from Equations 2 and 3 that the sample sizes 
required to attain the designated precision of expected width and 
assurance probability can be readily computed without complex 
algorithm. For illustration, consider the model and precision 
settings with ρ2 = 0.2, p = 5, 1 – α = 0.95, and ω = 0.3. It follows 
from Equation 2 that the sample size N

EW
 needed for the expected 

width of a 95% confi dence interval (ρ̂2
L
, ρ̂2

U
) to fall within the 

designated bound 0.3 is N
EW

 = 93 when the underlying population 
ρ2 = 0.2. Likewise, the corresponding sample size is N

EW
 = 43 for 

the confi gurations of ρ2 = 0.7, p = 5, 1 – α = 0.95, and ω = 0.3. In 
contrast, the necessary sample size computed with the simulation-
based approach of Kelley (2008, Table 4, p. 547) is 87 and 50, 
respectively. Whereas, Krishnamoorthy and Xia (2008, Table 2, p. 
401) yielded the respective values 84 and 49 for ρ2 = 0.2 and 0.7 
according to their trial-and-error procedure. It can be readily seen 
from these results that there are discrepancies between the sample 
sizes computed by the different techniques of Bonett and Wright 
(2011), Kelley (2008), and Krishnamoorthy and Xia (2008). It is 
presumably that the computational intensive methods of Kelley 
(2008), and Krishnamoorthy and Xia (2008) are more accurate 
than the simplifi ed formula of Bonett and Wright (2011). However, 
the prescribed exemplifi ed sample size calculations for precise 
confi dence intervals are not detailed enough to elucidate whether 
the trade of accuracy for simplicity is a wise bargain. To our best 
acknowledge, no research to date has examined the performance 
of Bonett and Wright’s (2011) simple formulas in greater detail. 
Consequently, it is worthwhile to clarify the issue surrounding the 
adequacy of their techniques because computational simplicity is 
not the only concern in sample size planning. For pedagogical and 
practical purposes, the accuracy of their sample size procedures is 
demonstrated in the next numerical investigation. 

Numerical study 

In order to demonstrate the features of Bonett and Wright’s 
(2011) sample size procedures in Equations 2 and 3, empirical 
examinations were performed for precise interval estimation of the 
squared multiple correlation coeffi cient. The numerical study was 
carried out in two stages. The fi rst stage involved extensive sample 
size calculations for the two precision principles of expected width 
and assurance probability across a variety of model confi gurations. 
In the second stage, Monte Carlo simulation studies were conducted 
to assess the actual precision outcome for the suggested sample 
sizes under the design characteristics described in the fi rst stage. 

Sample size calculations 

The determination of sample sizes needed for the chosen 
precision of the confi dence intervals requires the specifi cation of 
the confi dence level, the magnitude of squared multiple correlation 
coeffi cient, and the number of predictor variables. It is evident 
that the infl uence of each of these components on the precision 
behavior not only differs but also depends on the concurrent impact 
of other factors. To provide a concise explication, the numerical 
assessments are specifi ed by fi xing the number of predictors p = 5 
and confi dence level 1 – α = 0.95, and varying the squared multiple 
correlation coeffi cient ρ2 from 0.1 to 0.9 with an increment of 0.1 
in the appraisals. Moreover, the interval bound ω = 0.2, 0.3, and 
0.4, and assurance probability 1 – γ = 0.90 are selected for the 
two precision criteria of expected width and assurance probability. 
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These levels were chosen to refl ect common sample sizes used in 
typical research settings. Accordingly, the computed sample sizes 
N

EW
 and N

AP
 with respect to the selected precision requirements 

are listed in Tables 1 and 2 for the expected width and assurance 
probability principle, respectively. As expected, the sample sizes 
vary with the parameter and precision specifi cations of ρ2 and ω 
in the two tables. But it is evident from the reported results that 
the sample size is increasing with decreasing value of ω when all 
other factors are fi xed. Also, the sample size is a concave function 
of ρ2 with a maximum around 0.3 when all other factors are fi xed. 
Since the bound of interval width is identical in Tables 1 and 2, 
the consistent magnitude difference in the sample sizes N

EW
 and 

N
AP

 indicates that it typically requires a larger sample size to meet 
the necessary precision of assurance probability than the control 
of a designated expected width. In other words, the sample sizes 
computed by the expected width consideration tend to be inadequate 
to guarantee the desired assurance level of interval width. 

Simulation study 

We then evaluate the accuracy of the sample size calculations 
through the following Monte Carlo simulation study. Under the 
computed sample sizes, parameter confi gurations, and precision 
settings described in Table1 and 2, estimates of the true expected 
width or assurance probability are computed through Monte 
Carlo simulation of 10,000 independent data sets. Note that the 
exact probability density function of R2 is extremely complex and 
therefore, it is diffi cult to generate a pseudo random variable with 
the common expression of R2 in terms of the hypergeometric and 
beta functions. However, it is well known that there is a direct 
connection between the correlation model with multinormal 
variables and the multivariate normal regression model. Hence, 
inferences for ρ2 can be accomplished with the usual F* statistic:

F* =
R2 / p

1 R2( ) / N p 1( )

Additionally, there is an important correspondence between the 
derived F* distribution and the following generic form suggested 
by Gurland (1968), namely 

Z + W1( )
1/2{ }

2
+W2

W3     ,

where Λ
 
= ρ2/(1 − ρ2), Z has the standard normal distribution N(0, 

1), W
1
 ~ χ2(N − 1), W

2
 ~ χ2(p − 1), W

3
 ~ χ2(N − p − 1) where χ2(df) 

denotes a chi-square distribution with df degree(s) of freedom, and 
the random variables Z, W

1
, W

2
 and W

3
 are mutually independent. 

Consequently, the pseudo F* random variable or, equivalently, the 
pseudo random variable R2 = pF*/{(N − p − 1) + pF*}, can be 
generated by employing the provided random number functions 
of standard normal and chi-square distributions in most modern 
statistical packages. 

For each replicate of R2, the confi dence limits and corresponding 
interval width of the two-sided 95% confi dence intervals (ρ̂2

L
, ρ̂2

U
) of ρ2 

are calculated. Then the simulated expected width is the mean of the 
10,000 replicates of interval widths, whereas the simulated assurance 
probability is the proportion of the 10,000 replicates whose values of 
interval width are less than or equal to the specifi ed bound ω. The 
adequacy of the sample size procedure for precise interval estimation 
is determined by one of the following formulas: error = simulated 
expected width − nominal expected width or error = simulated 
assurance probability − nominal assurance probability. Both the 
simulated expected width and simulated tolerance probability along 
with the associated errors are summarized in Tables 1 and 2 as well. 

Results and discussions

For the simulated results of expected width and assurance 
probability in Tables 1 and 2, there exists some disturbing behavior 
for the sample size procedures of Bonett and Wright (2011). First, 
the simulated expected width and corresponding error in Table 
1 show that the computed sample sizes by Equation 2 are not 

Table 1
Computed sample size and simulated expected width for the nearly exact 95% two-sided confi dence interval of strength of association effect size ρ2 when the number of 

predictors p = 5

ω 0.2 0.3 0.4

ρ2 NEW Simulated E[W] Error NEW Simulated E[W] Error NEW Simulated E[W] Error

0.1 131 0.1920 -0.0080 082 0.2390 -0.0610 56 0.2861 -0.1139

0.2 202 0.1955 -0.0045 093 0.2846 -0.0154 55 0.3612 -0.0388

0.3 230 0.1972 -0.0028 105 0.2899 -0.0101 61 0.3764 -0.0236

0.4 225 0.1982 -0.0018 102 0.2939 -0.0061 59 0.3853 -0.0147

0.5 194 0.1999 -0.0001 088 0.2984 -0.0016 50 0.3985 -0.0015

0.6 149 0.2017 -0.0017 067 0.3058 -0.0058 38 0.4164 -0.0164

0.7 097 0.2067 -0.0067 043 0.3250 -0.0250 24 0.4658 -0.0658

0.8 048 0.2237 -0.0237 020 0.4088 -0.1088 08 0.8872 -0.4872

0.9 008 0.8458 -0.6458 008 0.8458 -0.5458 08 0.8461 -0.4461
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uniformly accurate for the 27 combined settings of ρ2 and ω. The 
absolute error is less than 0.01 for ρ2 ≤ 0.7 when ω = 0.2, and for 0.4 
≤ ρ2 ≤ 0.6 when ω = 0.3. Whereas all the resulting absolute errors 
are greater than 0.01 except for the single case of ρ2 = 0.5 when ω 
= 0.4. Moreover, it is noteworthy that the error is increasing with ρ2 
for each fi xed value of three interval bounds. The distinct pattern 
reveals the potential defi ciency in the sample size computation of 
Bonett and Wright (2011). Unfortunately, this undesirable property 
was not addressed in their numerical assessment. 

On the other hand, the assurance performance in Table 2 also 
demonstrates the underlying drawback of the simple formula in 
Equation 3. Due to the highly skewed distribution of R2 and the 
underlying metric of integer sample sizes, some of the simulated 
assurance probabilities are 1 for the calculated sample sizes. Hence 
the corresponding errors have the value of 0.1 for three, four and fi ve 
cases when ω = 0.2, 0.3 and 0.4, respectively. The only two cases 
giving acceptable result are associated with the simulated assurance 
0.9745 and 0.9062 for N

AP
 = 195 and 101 under the settings of ρ2 = 

0. 1 and ω = 0.2, and ρ2 = 0.5 and ω = 0.3, respectively. However, 
there are fi ve, four, and three occurrences that the computed sample 
sizes do not guarantee the desired assurance probability level for 
ω = 0.2, 0.3 and 0.4, respectively. All but one of these achieved or 
simulated assurance probabilities are not substantially lower than the 
nominal probability 0.9, and the only exception is associated with the 
simulated value 0.8987 and error -0.0013 for ρ2 = 0.5 and ω = 0.2. 
Consequently, the sample size formula has the serous disadvantage of 
underestimating the necessary sample size for achieving the specifi ed 
assurance level. Nonetheless, our extended calculations also confi rm 
that this phenomenon continues to exist in other model confi gurations. 
Overall, the presented numerical evidence suggests that the sample 
size formulas of Bonett and Wright (2011) are not accurate enough to 
serve as a general method for computing the sample sizes for ensuring 
precise confi dence intervals of squared multiple correlation. 

Conclusions 

There is a considerable recent literature pertaining to the 
illuminating applications of effect sizes and confi dence intervals 

in quantitative study. Accordingly, the desirability of achieving 
required precision in effect size estimation and the importance of 
sample size planning in constructing precise confi dence intervals are 
repeatedly emphasized in applied research across many scientifi c 
fi elds. Researchers should become methodologically conscious that 
most rules of thumb for sample size calculations are inadequate 
to warrant the conclusion that the resulting confi dence interval 
is of statistical precision and practical importance. Due to the 
computational complexity in sample size computation for precise 
interval estimation of strength of association effect sizes, Bonett 
and Wright (2011) presented alternative and simple sample size 
techniques in two distinct aspects. One method gives the minimum 
sample size, such that the expected confi dence interval width is 
within the designated bound. The other provides the sample size 
needed to guarantee, with a given assurance probability, that the 
width of a confi dence interval will not exceed the planned range. 
To justify the usefulness of the suggested methodology, numerical 
investigations were preformed here to evaluate the accuracy of their 
sample size procedures. In view of the conducted comprehensive 
empirical assessments, the approximate formulas of Bonett and 
Wright (2011) are not accurate enough to give optimal sample 
sizes in achieving the desired precision. Therefore, their procedures 
are not recommended for precise interval estimation of squared 
multiple correlation coeffi cient in multiple regression analysis. 

In order to enhance the applicability of confi dence intervals for 
strength of association effect sizes, in the present article, we present 
a comprehensive and update account of the corresponding sample 
size techniques. It is important to realize that the simplicity of an 
explicit formula may be appealing for inducing computational 
shortcuts but it does not involve all of the key factors in sample 
size calculation and, thus, is generally error prone. Without our 
appraisal and demonstration in this paper, applied researchers and 
practitioners will unknowingly adopt their sample size formulas for 
its advantage of simplicity. This may lead to miscomputed sample 
size, distorted precision performance and unsatisfactory research 
outcome for the planned study. Consequently, instead of the 
simplifi ed formulas, it is prudent to consider a more sophisticated 
approach such as the prescribed simulation-based method.

Table 2
Computed sample size and simulated assurance probability for the nearly exact 95% two-sided confi dence interval of strength of association effect size ρ2 when the number 

of predictors p = 5 and assurance probability 1 − γ = 0.9

ω 0.2 0.3 0.4

ρ2 NAP Simulated P{W ≤ ω} Error NAP Simulated P{W ≤ ω} Error NAP Simulated P{W ≤ ω} Error

0.1 195 0.9745 -0.0745 129 1.0000 -0.1000 93 1.0000 -0.1000

0.2 257 1.0000 -0.1000 127 1.0000 -0.1000 79 1.0000 -0.1000

0.3 273 1.0000 -0.1000 132 1.0000 -0.1000 80 1.0000 -0.1000

0.4 256 1.0000 -0.1000 122 1.0000 -0.1000 73 1.0000 -0.1000

0.5 216 0.8987 -0.0013 101 0.9062 -0.0062 60 1.0000 -0.1000

0.6 163 0.6750 -0.2250 075 0.6155 -0.2845 44 0.5755 -0.3245

0.7 105 0.5355 -0.3645 048 0.4662 -0.4338 27 0.3718 -0.5282

0.8 051 0.3946 -0.5054 022 0.2800 -0.6200 08 0.0527 -0.8473

0.9 008 0.0494 -0.8506 008 0.0752 -0.8248 08 0.1048 -0.7952
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