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The mediation model is one of the most popular procedures 
for studying the role of third variables involved in the relationship 
between an independent variable and a response/outcome variable 
(Ato & Vallejo, 2010). There are two main approaches for mediation 
analysis. The classical approach is the standard in psychology and 
the social sciences. It was developed in the 1980s (Judd & Kenny, 
1981; Baron & Kenny, 1986), but has a more remote history, and is 
connected with Campbell’s causation theory.  Mediation estimation 
and inference with classical approach use a structural equation 
model (SEM) framework, from regression models (e.g., Anderson 
& Hunter, 2012; Sánchez-Manzanares, Rico, Gil, & San Martín, 
2006) to path analysis with latent variables (e.g., Cava, Musitu, & 

Murgui, 2006). The causal inference (CI) approach is the standard 
in epidemiology and health sciences. It was developed in the 1990s 
(Robins & Greenland, 1992; Pearl, 2009) and it is connected with 
Rubin’s causation theory (Shadish, 2010). Mediation estimation 
with causal inference approach is based on potential outcomes and 
contrafactuals.

Dissatisfaction with how mediation is analysed and interpreted 
with classical approach has grown alarmingly in recent years 
(Bullock, Green, & Ha, 2010; Pardo & Román, 2013; Spencer, 
Zanna, & Fong, 2005; Zhao, Lynch, & Chen, 2010). By far, the 
main problem is that applied psychological researchers have 
focused on the statistical model, ignoring the fact that a mediation 
model is essentially a causal model whose restrictive assumptions 
are not taken into account (Bullock & Ha, 2011; Roe, 2012).

In this paper, we compare the basic features of these approaches 
and we suggest complementing the classical with the causal 
inference approach. Although both produce similar equations when 
the variables are numeric, the second approach can be generalised 
to variables of any kind and to many more complicated scenarios. 
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Abstract Resumen

Background: Although there is a broad consensus on the use of statistical 
procedures for mediation analysis in psychological research, the 
interpretation of the effect of mediation is highly controversial because 
of the potential violation of the assumptions required in application, most 
of which are ignored in practice. Method: This paper summarises two 
currently independent procedures for mediation analysis, the classical/
SEM and causal inference/CI approaches, together with the statistical 
assumptions required to estimate unbiased mediation effects, in 
particular the existence of omitted variables or confounders. A simulation 
study was run to test whether violating the assumptions changes the 
estimation of mediating effects. Results: The simulation study showed 
a signifi cant overestimation of mediation effects with latent confounders. 
Conclusions: We recommend expanding the classical with the causal 
inference approach, which generalises the results of the fi rst approach to 
mediation using a common estimation method and incorporates new tools 
to evaluate the statistical assumptions. To achieve this goal, we compare 
the distinguishing features of recently developed software programs in R, 
SAS, SPSS, STATA and Mplus.

Keywords: Classical mediation approach, causal inference mediation 
approach, statistical mediation analysis, sensibility analysis.

El enfoque clásico y el enfoque de la inferencia causal para el análisis 
de la mediación. Antecedentes: aunque existe un amplio consenso en el 
uso de los procedimientos estadísticos para el análisis de la mediación 
en la investigación psicológica, la interpretación del efecto de mediación 
resulta muy controvertida debido al potencial incumplimiento de los 
supuestos que requiere su aplicación, la mayoría de los cuales son ignorados 
en la práctica. Método: se resumen los procedimientos actualmente 
vigentes para el análisis de mediación desde los enfoques clásico y de 
la inferencia causal, junto con los supuestos estadísticos para estimar 
efectos de mediación no sesgados, en particular la existencia de variables 
omitidas o confundidores, y se utiliza un estudio de simulación para 
determinar si la violación de los supuestos puede cambiar la estimación 
del efecto de mediación. Resultados: el estudio de simulación mostró 
una sobreestimación importante del efecto de mediación en presencia 
de confundidores latentes. Conclusiones: se recomienda complementar 
el enfoque clásico con el enfoque de la inferencia causal, que generaliza 
los resultados del primer enfoque al análisis de la mediación e incorpora 
nuevas herramientas para evaluar sus supuestos estadísticos. Para alcanzar 
tal objetivo se comparan las características distintivas de los programas de 
software recientemente desarrollados en R, SAS, SPSS y Mplus.

Palabras clave: enfoque clásico para la mediación, enfoque de la inferencia 
causal para la mediación, análisis de la mediación estadística, análisis de 
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Moreover, it also has more sophisticated diagnostic tools and can 
be applied with programs that have been developed for the most 
popular computing platforms (R/STATA, SAS/SPSS and Mplus).

 
The classical approach

Recent research states that a mediation model (see MacKinnon, 
2007, 2012; Hayes, 2013) is basically an structural model with 
two equations: one for explaining a mediator M of a treatment or 
exposure X (i.e., X ➝ M) and another to explain the outcome Y 
of a treatment, given the mediator M (i.e., X ➝ Y | M). The model 
may incorporate one or more covariates. The resulting regression 
equations, assuming for simplicity a single covariate C with c

i
 

values,   are:

 mi= γ
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where residuals e
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with treatment. These equations represent the classical approach 
when regression models are used, where coeffi cient γ
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is a, β

1
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2
 is b (Figure 1), or when structural equation models are used. 

A combined model is often used to express Equation (2) in terms 
of Equation (1) as follows:
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In Equation (3), the effect of mediation or indirect effect 
represents the changes which X produced on Y transmitted through 
M and is usually estimated by the product of the coeffi cients β

2
 

and γ
1
, while the direct effect is the effect of the treatment on 

the response at a fi xed level of the mediator and is estimated by 
the coeffi cient β

1
. The inference is performed by dividing the 

indirect effect with a standard error using a formula proposed by 
Sobel (1982). The resulting Z test is very conservative because it 
assumes that the regression coeffi cients β

2
 and γ

1
 are independent 

and normally distributed, but it has been shown that the product 
distribution is highly skewed and leptokurtic (MacKinnon, 
Lockwood, & Williams, 2004). This is the procedure that is most 
commonly recommended in psychology.

To overcome some of the inferential problems posed by this 
procedure, several methods have been proposed to construct robust 

confi dence intervals around the product β
2
 γ

1
, in particular, the 

delta method, the product distribution, the Monte Carlo method, 
and various forms of bootstrap resampling. The Monte Carlo 
method appears to behave better (see Preacher & Selig, 2012), but 
some authors recommend the bias-corrected bootstrap method for 
these (Hayes & Scharkow, 2013) and other cases (Vallejo, Ato, 
Fernández, & Livacic, 2013). Various effect size measures have 
been proposed to assess the degree of mediation (see Preacher & 
Kelley, 2011) along with a power analysis for different mediation 
scenarios.

In addition to the linearity assumption (mediation analysis 
with the classical approach is not strictly applicable to models that 
include interactions or nonlinear terms), it is essential to consider 
three assumptions derived from the structural model, which 
represent situations where the error terms e

i1
 and e

i2
 covary.

Firstly, the mediation model should meet the assumption of 
temporal precedence of cause (X must precede in time to M and 
M to Y), a very complicated task with cross-sectional data (see 
Cole & Maxwell, 2003), and some have even suggested using 
the mediation model only with longitudinal data (see Maxwell & 
Cole, 2007; Maxwell, Cole, & Mitchell, 2011). If the treatment is a 
randomised variable, it is very unlikely to be caused by the mediator 
or the response. The mediator is rarely manipulated however, so 
the temporal precedence of the mediator on the outcome can only 
be justifi ed measuring fi rst the mediator and then the response or 
using appropriate control techniques, such as instrumental variables 
(Angrist, Imbens & Rubin, 1996 ) or propensity scores (Coffman, 
2011; Jo, Stuart, MacKinnon, & Vinokur 2011).

Secondly, it is assumed that the treatment and the mediator 
are measured without error. If there is not a high reliability 
in the measurement of the variables, the coeffi cients become 
biased and the mediating causal effect will be affected. The 
consequences of measurement error are documented in Valeri 
(2012) and VanderWeele, Valeri and Ogburn (2012). There are 
several procedures to correct the bias due to measurement error in 
the variables, the most effective being the use of latent variables 
instead of individual indicators of treatment and mediator.

Thirdly, it is assumed that there are no omitted variables (also called 
spurious or confounder variables in this context) in relationships X 
➝ M and M ➝ Y. Figure 1 shows a situation with two potential 
omitted variables (Z

1
 and Z

2
), the fi rst acting as a confounder in X 

➝ M and the second acting as a confounder in M ➝ Y relationships. 
Randomisation of the treatment (e.g., using an experimental design) 
assures that no omitted variables will bias the X ➝ M relationship, 
but since it is not easy or not possible to randomise the mediator, the 
M ➝ Y relationship can potentially be affected by the presence of 
confounders. This is the most problematic situation that can often 
arise. Some solutions have been proposed, but the most effective 
way to circumvent the problem of omitted variables is to measure 
all potential confounders and control their effects.

    
The causal inference approach

An independent alternative to the classical is the causal 
inference approach (Pearl, 2010). This new approach focuses on 
the concept of the counterfactual, considering what would happen 
to an individual if instead of observing one feature (e.g., belonging 
to the experimental group) it were observed together with another 
(e.g., belonging to the control group). CI approach uses the theory 
of potential outcomes (Holland, 1986; Rubin, 2005), which defi nes 

Mediator
(M)

Independent
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Figure 1.   The classical approach to mediation analysis with confounders 
Z1 y Z2
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a causal mechanism as a process by which a treatment (or exposure) 
causally affects an outcome given a mediator. Identifying a causal 
mechanism in this approach is formulated as a decomposition of 
the total causal effect into direct and indirect effects (Pearl, 2009).

Following Imai, Keele and Tingley (2010), Muthen (2011), Pearl 
(2012) and Valeri and VanderWeele (2013), let Y

i 
(x) denote the 

potential outcome that would have been observed for i participant 
from a population (i = 1,…, N) had the treatment X

i
 been set at 

the value x. Note that Y
i
(x) is not an observed outcome so it may 

be counterfactual. Assuming a randomised binary treatment (X
i
 = 

0, for participants assigned to the control group and X
i
 = 1, for 

those assigned to the experimental group), then for the participant 
i, the causal effect of the treatment would be Y

i
(1) – Y

i
(0), but this 

result is not identifi ed because participant i is observed for only 
one treatment. Nevertheless, for N participants of a large sample 
the average effect of treatment is identifi able and defi ned as the 
difference E[Y

i 
(1) – Y

i 
(0)].

Let Y
i 
(1) and M

i 
(1) now be values   of the outcome and the 

mediator that would have been obtained for participant i if treatment 
X

i 
were observed at level 1, and also let Y

i 
(1,M

i 
(1)) be the value 

of the outcome that would be obtained if both the treatment X
i
 and 

the mediator M
i
 were observed at level 1. Additionally, introducing 

a covariate C (there can be more than one) observed at level c, the 
causal inference approach defi nes the Average Total Effect (ATE) 
by comparing the outcome variable between the two treatment 
levels conditional on the value c of the covariate,

 
 ATE = E[Y

i 
(1,M

i 
(1)) – E(Y

i 
(0,M

i 
(0)) | C

i 
= c] (4)

This equation has two components: fi rstly, the effect of Average 
Causal MEdiation (ACME), which is the result of comparing the 
treatment at level 1 with level 0, fi xing the mediator at level x, 
conditional on the level c of the covariate,

          
 ACME = δ

i 
(x) =  E[Y

i 
(x,M

i 
(1)) – Y

i 
(x,M

i
 (0)) | C

i
 = c]   (5)

and secondly the Average Direct Effect (ADE) which is the result 
of comparing the treatment at level 1 with level 0, setting the 
mediator at level x, conditional on the level  c of the covariate

 ADE = ζi (x) = E[Y
i 
(1,M

i 
(x) – Y

i 
(0,M

i 
(x)) | C

i 
= c]   (6)

Equations (5) and (6) are average effects and assume that there 
is no interaction between treatment and mediator.

Identifying indirect (ACME ) and direct (ADE) causal effects 
requires what is known as the Sequential Ignorability (SI) 
assumption (see Robins & Greenland, 1992; Pearl, 2009) which 
consists of two parts: (A) given one or more observed covariates, 
the treatment is ignorable, that is, independent of the potential 
values   of the mediator and the outcome, and (B) given the treatment 
and one or more observed covariates, the mediator is ignorable, 
that is, independent of all potential values of outcome. More 
specifi cally, the SI assumption implies the following requirements: 
1) there should be no latent confounders in the X ➝ Y path (all 
of the variables that cause both X and Y must be included in the 
model), 2) there should be no latent confounders in the M ➝ Y 
path (all the variables that cause both M and Y must be included 
in the model), 3) there should be no latent confounders in the X ➝ 
M path, and 4) treatment cannot be a cause of any confounder of 
the M ➝ Y path.

The fi rst part of the sequential ignorability assumption 
(requirements 1 and 3) is satisfi ed if experimental designs or 
rigorous effective controls with non-experimental designs are 
used. But the second part of the sequential ignorability assumption 
(requirements 2 and 4) is not satisfi ed because it is virtually 
impossible to exclude the existence of omitted variables that 
confound the relationship between the mediator and the outcome. 
Under this assumption, Imai, Keele and Yamamoto (2010) proved 
that the effects of causal mediation are nonparametrically identifi ed 
(i.e., they can be estimated without requiring a functional form 
and a known distribution), irrespective of the statistical model, 
of which the regression models of the classical approach are one 
particular case.

Then with the sequential ignorability assumption verifi ed, the 
product of coeffi cients β

2 
γ

1
 of the classical approach (equations 

1 and 2, which must meet the assumptions of linearity and non-
interaction) and the indirect effect of causal inference approach 
(Equation 5, assuming sequential ignorability) provide a valid 
estimate of the causal mediation effect if mediator and outcome 
are normally distributed variables. The main advantage of the 
causal inference over the classical approach is that the formulas 
for mediation (Pearl, 2012) can easily be generalised to a variety 
of models that do not require the assumptions of linearity and 
interaction to be met. Moreover, within the causal inference 
approach there are sophisticated procedures to assess the degree 
of compliance with the sequential ignorability assumption and 
the measurement error bias in the variables (Valeri, 2012). 
Additionally, Imai, Keele and Yamamoto (2013) have proposed 
specifi c experimental designs that can easily be implemented to 
facilitate the identifi cation of causal mechanisms.

Sensitivity analysis

Even if the sequential ignorability assumption is not verifi ed, 
it is possible to determine to what extent the estimates may be 
affected by the presence of confounders. Figure 2 shows a scenario 
where a latent confounder Z

2 
(see Figure 1) is not included 

in the model creating a residual covariance between e
1
 and e

2
 

whose magnitude depends on the mediation effect. Although 
the inclusion of a non-null covariance would render the model 
unidentifi able, Muthen (2011) proved that the removal of the M 
➝ Y path does not affect the estimate of the causal effects and 
makes the model with a residual covariance included identifi able, 
as shown in Figure 3.

Mediator
(M)

Dependent
variable

(Y)

Independent
variable

(X)

e1

e2

a b

c’

Figure 2. Mediation with covariance between errors of mediator and 
response
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Imai, Keele and Yamamoto (2010) proposed to assess the presence 
of confounders through an analysis of sensitivity where the causal 
effects are calculated presetting values for the correlation between the 
residuals of equations (4) and (5). This procedure is useful in analysing 
existing data, because it allows us to assess the potential presence of 
confounders, but it is also used in planning new studies, because it 
allows us to estimate optimal sample sizes and the magnitude of the 
indirect effect so that the confi dence bands do not include zero given 
a certain degree of confounding in the M ➝ Y path.

Sensitivity analysis is interpreted in terms of a range, and has a 
high degree of subjectivity, but it may be useful in assessing the degree 
to which the bias due to the inclusion of confounders may affect the 
interpretation of the effects (Imai, Keele, Tingley, & Yamamoto, 
2011). The example in the next section illustrates this point.

An example with simulated data

Using a code previously proposed by Muthen (2011, pp. 35-
37), we conducted a study with a binary categorical randomised 
treatment (V3), a numeric mediator (V2) and a numerical outcome 
variable (V1) simulating 200 observations and 1000 repetitions. 
We used the model in Figure 2 as the population model, setting 
an indirect effect of 0.09 and an direct effect of 0.50, and as the 
analysis model we used the model in Figure 3, with three different 
fi xed values   of the correlation between residuals (ρ): 0, 0.25 
and 0.50. The remaining parameters were set to the appropriate 
values   to produce the desired causal effects. For each value of ρ, 
the population values and the mean estimates of 1,000 repetitions 
were practically the same (with a maximum bias of .005 units), 
revealing that the indirect and direct causal effects were estimated 
correctly in the three cases. Then we randomly selected one of the 
1,000 replicates registered for each value of ρ, and these data were 
analysed with the R-mediation package (4.2.4 version, see Tingley, 
Yamamoto, Hirose, Keele, & Imai, 2013). We follow the suggestions 
of García, Pascual, Frías, Van Krunckelsven and Murgui (2008) for 
interpretation of power and confi dence intervals.

The fi rst part of the Output 1 (Table 1) shows the R code 
used and the estimates of the causal effects with quasi-Bayesian 
Monte Carlo confi dence intervals, assuming that the correlation 
between residuals is ρ = 0. The two equations were estimated 
with the R-lm function, the mediation effects with the R-mediate 
function and the sensitivity analysis with the R-medsens function 
of the mediation package. For the random replicate used, we 
found a non-signifi cant indirect effect (ACME = 0.0755, p = .08) 

and a mediated proportion of 0.115 (p = 0.08), so the presence 
of a mediating effect was discarded. The second part of Output 1 
(Table 1) is a sensitivity analysis with the medsens function, which 
reveals that the confi dence interval of indirect effects includes zero 
in the entire spectrum of the sensitivity parameter ρ (from - 0.9 to 
+ 0.9). In fact, sensitivity analysis is not required when the indirect 
effect is not signifi cant. Figure 4 is a plot of sensitivity analysis and 
shows, together with the axes of indirect effect and ρ, the observed 

Mediator
(M)

Dependent
variable

(Y)

Independent
variable

(X)

e1

e2

a

c’

Figure 3. Mediation with covariance between errors of mediator and 
response (with path b deleted)

Table 1
Output 1: R-mediation program for simulated data with ρ = 0

> m1=lm(V2~V3,data=sim1)
> m2=lm(V1~V2+V3,data=sim1)
> med1=mediate(m1,m2,treat=”V3”,mediator=”V2”)
> summary(med1)

Causal mediation analysis 
Quasi-Bayesian confi dence intervals

Estimate 95% CI Lower 95% CI Upper p-value

ACME

ADE

Total effect

Prop. mediated

0.0755

0.5317

0.6023

0.1147

-0.00732

0.33333

0.37395

-0.01425

0.15906

0.73964

0.82127

0.25828

0.08

0.00

0.00

0.08

Sample size used: 200 
Simulations: 1000 

> asens1=medsens(med1,rho.by=.1,effect.type=”indirect”)
> summary(asens1)

Mediation sensitivity analysis for average causal mediation effect
Sensitivity region

Rho ACME 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] -0.9

[2,] -0.8

[3,] -0.7

[4,] -0.6

[5,] -0.5

[6,] -0.4

[7,] -0.3

[8,] -0.2

[9,] -0.1

[10,]  0.0

[11,]  0.1

[12,]  0.2

[13,]  0.3

[14,]  0.4

[15,]  0.5

[16,]  0.6

[17,]  0.7

[18,]  0.8

[19,]  0.9

0.4599

0.3214

0.2545

0.2109

0.1782

0.1515

0.1284

0.1075

0.0879

0.0688

0.0498

0.0302

0.0093

-0.0138

-0.0405

-0.0732

-0.1168

-0.1837

-0.3223

-0.0424

-0.0302

-0.0244

-0.0206

-0.0180

-0.0158

-0.0141

-0.0127

-0.0115

-0.0107

-0.0106

-0.0120

-0.0189

-0.0442

-0.0920

-0.1574

-0.2470

-0.3859

-0.6747

0.9623

0.6730

0.5334

0.4424

0.3743

0.3189

0.2709

0.2277

0.1873

0.1484

0.1101

0.0723

0.0374

0.0165

0.0109

0.0109

0.0133

0.0184

0.0302

0.81

0.64

0.49

0.36

0.25

0.16

0.09

0.04

0.01

0.00

0.01

0.04

0.09

0.16

0.25

0.36

0.49

0.64

0.81

0.6161

0.4868

0.3727

0.2738

0.1902

0.1217

0.0685

0.0304

0.0076

0.0000

0.0076

0.0304

0.0685

0.1217

0.1902

0.2738

0.3727

0.4868

0.6161

Rho at which ACME = 0: 0.3
R^2_M*R^2_Y* at which ACME = 0: 0.09
R^2_M~R^2_Y~ at which ACME = 0: 0.0685
 
> plot(asens1)  - see Figure 4 -
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mediating effect (dashed line) and the values   that the indirect effect 
would reach varying the sensitivity parameter (solid curved line) 
along its range in steps of .10. Note that the confi dence interval 
(limits represented with a grey background) always includes zero 
for the indirect effect whatever the value of ρ is. This result is 
expected as a consequence of imposing a zero correlation between 
the residuals of Equations (1) and (2).

In contrast, the estimators of the causal effects assuming ρ = 0.25 
showed a moderate overestimation of the indirect effect, of 0.163 
- 0.076 = 0.087 units (see Output 2 on Table 2). The indirect effect 
was now signifi cant (ACME = .163; p = .04) and the proportion 
mediated jumped from 0.11 to 0.25. The sensitivity analysis shown 

in the textual output and the complementary plot of Figure 4 allow 
us to conclude that for the indirect effect to be zero, the correlation 
between the residuals of the regression models for mediator and 
outcome variables should be ρ = .60 (the confi dence interval 
in Figure 5 ranges from about 0.55 to 0.75). An algebraically 
equivalent form of sensitivity analysis is to use the product of the 
determination coeffi cients of both regression models. It is shown 
in the penultimate line of Output 2 and indicates that the indirect 
effect will be zero when the confounders of the mediator-response 
relationship together explain 36% or more of the residual variance 
(i.e., 0.60 × 0.60 = .36). The last line of the output refers to the 
total variance instead of the residual variance and indicates that 
the indirect effect will be zero when the total variance explained 
by confounding is greater than 17% (i.e., 0.40 × 0.43 = .17). In 
rigorously applied research where no important confounders are 
unchecked, the researcher should conclude that a correlation as 
high as that required for the ACME zero is unlikely and therefore 
he or she should interpret the causal mediation effect found with 
confi dence, when in fact, the simulated data assume a correlation 
of ρ = .25 and a causal effect was overestimated.

Finally, with ρ = 0.5, the indirect effect estimator provided an 
important overestimation with respect to ρ = 0, of 0.208-0.076 = 
0.132 units (see Output 3 on Table 3), which was also signifi cant 
(ACME = 0.208; p = .03), and the proportion mediated jumped in 
this case from 0.11 to 0.33. The textual output of the sensitivity 

0.4

0.2

0.0

-0.2

A
ve

ra
ge

 m
ed

ia
tio

n 
ef

fe
ct

-0.5 0.0 0.5

Sensitivity parameter: ρ

ACME(ρ)

Figure 4. Sensitivity plot for simulated data with  ρ = 0
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Figure 5. Sensitivity plot for simulated data with  ρ = 0.25

Table 2
Output 2: R-mediation program for simulated data with ρ = 0.25

> m3=lm(V2~V3,data=sim2)
> m4=lm(V1~V2+V3,data=sim2)
> med2=mediate(m3,m4,treat=”V3”,mediator=”V2”)
> summary(med2)

Causal mediation analysis 
Quasi-Bayesian confi dence intervals

Estimate 95% CI Lower 95% CI Upper p-value

ACME

ADE

Total effect

Prop. mediated

0.1625

0.4821

0.6446

0.2508

0.0156

0.3276

0.4213

0.0332

0.3036

0.6472

0.8641

0.4210

0.04

0.00

0.00

0.04

Sample size used: 200 
Simulations: 1000 

> asens2=medsens(med2,rho.by=.1,effect.type=”indirect”)
> summary(asens2)

Mediation sensitivity analysis for average causal mediation effect
Sensitivity region

Rho ACME 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] 0.5

[2,] 0.6

[3,] 0.7

0.0513

0.0190

-0.0241

-0.0004

-0.0118

-0.0575

0.1030

0.0498

0.0093

0.25

0.36

0.49

0.1206

0.1736

0.2363

                               
Rho at which ACME = 0: 0.6
R^2_M*R^2_Y* at which ACME = 0: 0.36
R^2_M~R^2_Y~ at which ACME = 0: 0.1736 

> plot(asens2)  - see Figure 5 -
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analysis and Figure 6 show that the effect will be zero when the 
indirect effect is ρ = 0.80 or greater, or when the confounders in the 

response-mediator relationship explain at least 64% of the residual 
variance (e.g., 0.8 × 0.8 = .64), which would lead the researcher to 
conclude with absolute confi dence on the relevance of the indirect 
effect if important confounders are not present.

This example with simulated data illustrates the overestimation 
of the indirect effect in the presence of confounders of the mediator-
response relationship, from a non-signifi cant indirect effect with ρ 
= 0 to signifi cant effects with ρ = .25 and ρ = .50 using numerical 
variables with mediator and response. Unfortunately the existence of 
confounders is a fairly common situation in psychological research 
that results in an overestimation of the effects and frequently changes 
in the inference. The limited control of confounders in usual practice 
justifi es the high degree of dissatisfaction with the mediation 
analysis applications within the classical approach and the need to 
supplement it with causal inference approach, where a better control 
on interaction mediator-response is available, the options to use non-
interval variables for mediator and response and powerful diagnostic 
tools and its generalisation to more complicated research scenarios.

Software for mediation analysis with the causal inference 
approach

Four major programs of professional statistical computing 
(R, SAS, SPSS and STATA) can now be used to perform a 
mediation analysis with the causal inference approach. The main 
characteristics of these programs are summarised in Table 4 (see 
Valeri & VanderWeele, 2013). Firstly, the R-mediation package 
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Figure 6. Sensitivity plot for simulated data with ρ = 0.50

Table 3
Output 3: R-mediation program for simulated data with ρ = 0.50

> m5=lm(V2~V3,data=sim3)
> m6=lm(V1~V2+V3,data=sim3)
> med3=mediate(m3,m4,treat=”V3”,mediator=”V2”)
> summary(med3)

Causal mediation analysis 
Quasi-Bayesian confi dence intervals

Estimate 95% CI Lower 95% CI Upper p-value

ACME

ADE

Total effect

Prop. mediated

0.2080

0.4306

0.6386

0.3269

0.0327

0.2788

0.3978

 0.0696

0.3921

0.5769

0.8738

 0.5179

0.03

0.00

0.00

0.03

               
Sample size used: 200 
Simulations: 1000  

> asens3=medsens(med3,rho.by=.1,effect.type=”indirect”)
> summary(asens3)

Mediation sensitivity analysis for average causal mediation effect
Sensitivity region

Rho ACME 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] 0.7

[2,] 0.8

0.0412

-0.0201

-0.0010

-0.0496

0.0833

0.0093

0.49

0.64

0.1669

0.2181

     
Rho at which ACME = 0: 0.8
R^2_M*R^2_Y* at which ACME = 0: 0.64
R^2_M~R^2_Y~ at which ACME = 0: 0.2181 

> plot(asens3)  - Figure 6-

Table 4
Comparative features of programs for mediation analysis with the causal 

inference approach

Mediation
(R/STATA)

Mediation
(SAS/SPSS)

MPLUS

Estimates all causal effects NOa YES YES

Interactions: 
Treatment-Mediator
Mediator-Covariate/s

YES
NO

YES
NO

YES
YES

Available models:
Linear
Generalised linear
Non linear 

YES (lm)
YES (glm)

YES

YES
YES
NO

YES
YES
YES

Works with latent variables NO NO YESb

Research designs:
Cross-sectional
Cohort
Case-control

YES
YES
YES

YES
YES
YES

YES
YES
NO

Standard errors:
Bootstrap
Delta
Bayesian Monte Carlo

YES
YES

YES 
(default)

YES
 YES 

(default)
NO

YES
YES

YES

Sensitivity analysis YES NO NOc

Moderated mediation YES YES YES

Multiple mediators YES/NOd NO YES

Generalisation to multilevel analysis YES/NOd NO NOc

a: Natural causal effects only; b: Not available yet; c: Not available, but it may be 
programmable; d: Is available with R but not with STATA
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(Tingley et al., 2013), which was used in the previous section, is 
an easy to implement but powerful alternative. Among its main 
features, we emphasize the availability of linear and nonlinear 
models (including R functions such as lm for linear models, glm 
for generalised linear models and glmer for mixed models), the 
sensitivity analysis tools, the option to use multiple mediators 
and the generalisation to multilevel models. However, it does not 
work with latent variables. There is a similar program, albeit more 
modest, for STATA (Hicks & Tingley, 2011), which analyses linear 
and nonlinear models and also includes sensitivity analysis, but not 
multilevel models or multiple mediators.

Second, the macro mediation developed under SAS 9.2 and 
SPSS 19.0 versions (Valeri & VanderWeele, 2013) is an important 
alternative with many interesting options, but it does not include 
sensitivity analysis, latent variables or multilevel models.

And fi nally, in an unpublished document (Muthen, 2011), a 
Mplus code (version 6.2) is presented for mediation analysis within 
the causal inference approach, inspired by macros developed for 
SAS/SPSS (Valeri & VanderWeele, 2013). This code shows the 
versatility of the program and its potential to include interactive 
terms, nonlinear models, multilevel and multiple mediators, latent 
variables and even the option to program a sophisticated sensitivity 
analysis if desired. 

Authors’ Note

This work was supported by grants from the Spanish Ministry 
of Science and Innovation (Ref: PSI-2011-23395) and the Spanish 
Ministry of Economy and Competitiveness (Ref: EDU-2012-
34433) awarded to the authors.

References

Anderson, S., & Hunter, S.C. (2012). Cognitive appraisals, emotional 
reactions and their associations with three forms of peer victimization. 
Psicothema, 24, 621-627.

Angrist, J.D., Imbens, G.W., & Rubin, D.B. (1996). Identifi cation of causal 
effects using instrumental variables. Journal of the American Statistical 
Association, 91, 444-455.

Ato, M., & Vallejo, G. (2011). Los efectos de terceras variables en la 
investigación psicológica. Anales de Psicología, 27, 550-561.

Baron, J., & Kenny, D.A. (1986). The moderator-mediator variable 
distinction in social psychological research: Conceptual, strategic and 
statistical considerations. Journal of Personality and Social Psychology, 
51, 1173-1182.

Bullock, J.G., & Ha, S.E. (2011). Mediation analysis is harder than it 
looks. In J.N. Drukman, D.P. Green, J.H. Kuklinski & A. Lupia (Eds.), 
Cambridge Handbook of Experimental Political Science (pp. 508-521). 
New York, NY: Cambridge University Press.

Bullock, J.G., Green, D.P., & Ha, S.E. (2010). Yes, but what’s the 
mechanism? (don’t expect an easy answer). Journal of Personality and 
Social Psychology, 98, 550-558.

Cava, M.J., Musitu,  G., & Murgui, S. (2006). Familia y violencia escolar: el 
rol mediador de la autoestima y la actitud hacia la autoridad institucional 
[Family and school violence: The mediator role of self-esteem and 
attitudes towards institutional authority]. Psicothema, 18, 367-373.

Coffman, D.L. (2011). Estimating causal effects in mediation analysis 
using propensity scores. Structural Equation Modeling, 18, 357-369.

Cole, D.A., & Maxwell, S.E. (2003). Testing mediational models with 
longitudinal data: Questions and tips in the use of structural equation 
modeling. Journal of Abnormal Psychology, 112, 558-577.

García, J.F., Pascual, J., Frías, M.D., Van Krunckelsven, D., & Murgui, S. 
(2008). Diseño y análisis de la potencia: n y los intervalos de confi anza 
de las medias [Design and power analysis: n and confi dence intervals 
of means]. Psicothema, 20, 933-938.

Hayes, A.F. (2013). Introduction to mediation, moderation and conditional 
process analysis: A regression-based approach. New York, NY: The 
Guilford Press.

Hayes, A.F., & Scharkow, M. (2013). The relative trustworthiness of tests 
of the indirect effect in statistical mediation analysis: Does method 
really matter? Psychological Science, 24, 1918-1927. 

Hicks, R., & Tingley, D. (2011). Causal mediation analysis. The Stata 
Journal, 11, 1-15.

Holland, P.W. (1986). Statistics and causal inference. Journal of the 
American Statistical Association, 81, 945-960.

Imai, K., Keele, L., & Yamamoto, T. (2010). Identifi cation, inference and 
sensitivity analysis for causal mediation effects. Statistical Science, 1, 
51-71.

Imai, K., Keele, L., & Tingley. D. (2010). A general approach to causal 
mediation analysis. Psychological Methods, 15, 309-344.

Imai, K., Keele, L., & Yamamoto, T. (2013). Experimental designs for 
identifying causal mechanisms. Journal of the Royal Statistical Society, 
176, Part I, 5-51.

Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking 
the black box of causality: Learning about causal mechanisms from 
experimental and observational studies. American Political Science 
Review, 105, 765-789.

Jo, B., Stuart, E.A., MacKinnon, D.P., & Vinokur, A.D. (2011). The use 
of propensity scores in mediation analysis. Multivariate Behavioral 
Resarch, 46, 425-452.

Judd, C.M., & Kenny, D.A. (1981). Process analysis: Estimating mediation 
in treatment evaluations. Evaluation Review, 5, 602-619.

MacKinnon, D.P. (2007). Introduction to mediation analysis. Mahwah, NJ: 
Erlbaum.

MacKinnon, D.P., Cheong,  J., &  Pirlott, A.G. (2012). Statistical mediation 
analysis. In H. Cooper,  P.M. Camic, D. Long, A.T.Panter, D. Rindskopf, 
& K.J. Sher (Eds.). APA Handbook of Research Methods in Psychology, 
Vol 2: Research designs: Quantitative, qualitative, neuropsychological, 
and biological (pp. 313-331). Washington, DC: American Psychological 
Association.

MacKinnon, D.P. (2008). Introduction to statistical mediation analysis. 
New York, NY: Lawrence Erlbaum.

MacKinnon, D.P., Lockwood, C.M., & Williams, J. (2004). Confi dence 
limits for the indirect effect: Distribution of the product and resampling 
methods. Multivariate Behavioral Research, 39, 99-128.

Maxwell, S.E., & Cole, D.A. (2007). Bias in cross-sectional analysis of 
longitudinal mediation. Psychological Methods, 12, 23-44.

Maxwell, S.E., Cole, D.A., & Mitchell, M.A. (2011). Bias in cross-sectional 
analysis of longitudinal mediation: Partial and complete mediation under 
an autoregressive model. Multivariate Behavioral Research, 46, 816-841. 

Muthen, B. (2011). Applications of causally defi ned direct and indirect 
effects in mediation analysis using SEM in Mplus. Unpublished Mplus 
paper. URL: http://www.statmodel.com/download/causalmediation.pdf.
Accessed: 2013-06-21 (Archived by WebCite® at http://www.webcita-
tion.org/6LIEfxWaJ).

Pardo, A., &  Román, M. (2013). Refl ections on the Baron and Kenny 
model of statistical mediation. Anales de Psicología, 29, 614-623.

Pearl, J. (2009). Causal inference in statistics: An overview. Statistics 
Surveys, 3, 96-146. 

Pearl, J. (2010). An introduction to causal inference. The International 
Journal of Biostatistics, 6(2), Article 7 (DOI: 10.2202/1557-4679.
1203). 

Pearl, J. (2012). The mediation formula: A guide to the assessment of 
pathways and mechanisms. Prevention Science, 13, 426-436.

Preacher, K.J., & Kelley, K. (2011). Effect size measures for mediation 
models: Quantitative strategies for communicating indirect effects. 
Psychological Methods, 16, 93-115.



Classical and causal inference approaches to statistical mediation analysis

259

Preacher, K.J., & Selig, J.P. (2012). Advantages of Monte Carlo confi dence 
intervals for indirect effects. Communication Methods and Measures, 
6, 77-98. 

Robins, J.M., & Greenland, S. (1992). Identifi ability and exchangeability 
for direct and indirect effects. Epidemiology, 3, 143-155.

Roe, R.A. (2012). What is wrong with mediators and moderators?  The 
European Health Psychologist, 14, 4-10.

Rubin, D.B. (2005). Causal inference using potential outcomes: Design, 
modeling, decisions. Journal of the American Statistical Association, 
100, 322-331.

Sánchez-Manzanares, M., Rico, R., Gil, F., & San Martín, R. (2006). 
Memoria transactiva en equipos de toma de decisiones: implicaciones 
para la efectividad de equipo [Transactive memory in decision-making 
teams: Implications for team effectiveness]. Psicothema, 18, 750-756. 

Shadish, W.R. (2010). Campbell and Rubin: A primer and comparison of 
their approaches to causal inference in fi eld settings. Psychological 
Methods, 15, 3-17.

Sobel, M.E. (1982). Asymptotic confi dence intervals for indirect effects in 
structural equation models. Sociological Methodology, 12,  290-312. 

Spencer, S.J., Zanna, M.P., & Fong, G.T. (2005). Establishing a causal 
chain: Why experiments are often more effective than mediational 

analyses in examining psychological processes. Journal of Personality 
and Social Psychology, 89, 845-851.

Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2013). 
Mediation: R package for causal mediation analysis. Journal of 
Statistical Sofware (in press). 

Valeri, L. (2012). Statistical methods for causal mediation analysis. 
Doctoral dissertation. Cambridge, MA: Harvard University DASH 
Repository.

Valeri, L., & VanderWeele, T.J. (2013). Mediation analysis allowing for 
exposure-mediator interactions and causal interpretation: Theoretical 
assumptions and implementation with SAS and SPSS macros. 
Psychological Methods, 18, 137-150.

Vallejo, G., Ato, M., Fernández, P., & Livacic-Rojas, P. (2013). Multilevel 
bootstrap analysis with assumptions violated. Psicothema, 25, 520-
528.

VanderWeele, T.J., Valeri, L., & Ogburn, E.L. (2012). The role of 
measurement error and misclassifi cation in mediation analysis. 
Epidemiology, 23, 561-564.

Zhao, X., Lynch, J.G., & Chen, Q. (2010). Reconsidering Baron and Kenny: 
Myths and truths about mediation analysis. Journal of Consumer 
Research, 37, 197-206.


