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Educational measurement professionals have underscored the 
appreciable role of cognitive theory in educational testing (e.g., 
Chipman, Nichols, & Brennan, 1995; Embretson, 1985). Because 
knowledge, mental processes, and examinees’ response strategies 
defi ne construct representation, Embretson (1983) argued that 
cognitive theory could improve psychometric practice by guiding 
the construct representation of a test. Leighton, Gierl, and Hunka 
(2004) claimed that the cognitive requirements eliciting particular 
knowledge structures, processes, skills, and strategies, which 

are referred to as attributes (de la Torre, 2009b; de la Torre & 
Lee, 2010), could be assembled into cognitive models that are 
then used to develop test items. Assessments that are developed 
for identifying attribute mastery status of examinees to obtain 
convincing evidence for diagnostic inferences about examinees’ 
cognitive strengths and weaknesses are referred to as cognitively 
diagnostic assessments (CDAs: de la Torre & Minchen, 2014). For 
CDA to impact the testing practice, the role of cognitive theory 
needs to be well articulated in the test design. However, until quite 
recently, the impact of cognitive theory on test design has been 
minimal (Embretson, 1998; National Research Council, 2001). 
Embretson (1994) has attributed this to the lack of frameworks 
that use cognitive theory in the test development. Recently, various 
approaches integrating cognitive theory into psychometric practice 
have been proposed. These include the rule space methodology 
(Tatsuoka, 1983), the attribute hierarchy method (Leighton, Gierl, 
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Abstract Resumen

Background: Although research in cognitive psychology suggests 
refraining from investigating cognitive skills inisolation, many cognitive 
diagnosis model (CDM) examples do not take hierarchical attribute 
structures into account. When hierarchical relationships among the 
attributes are not considered, CDM estimates may be biased. Method: 
The current study, through simulation and real data analyses, examines 
the impact of different MMLE-EM approaches on the item and person 
parameter estimates of the G-DINA, DINA and DINO models when 
attributes have a hierarchical structure. A number of estimation approaches 
that can result from modifying either the Q-matrix or prior distribution 
are proposed. Impact of the proposed approaches on item parameter 
estimation accuracy and attribute classifi cation are investigated. Results: 
For the G-DINA model estimation, the Q-matrix type (i.e, explicit vs. 
implicit) has greater impact than structuring the prior distribution. 
Specifi cally, explicit Q-matrices result in better item parameter recovery 
and higher correct classifi cation rates. In contrast, structuring the prior 
distribution is more infl uential on item and person parameter estimates for 
the reduced models. When prior distribution is structured, the Q-matrix 
type has almost no infl uence on item and person parameter estimates 
of the DINA and DINO models. Conclusion: We can conclude that the 
Q-matrix type has a signifi cant impact on CDM estimation, especially 
when the estimating model is G-DINA.

Keywords: CDM, cognitive diagnosis modeling, estimation approaches, 
Q-matrix.

Enfoques de estimación en Modelado Diagnóstico Cognitivo cuando los 
atributos están estructurados jerárquicamente. Antecedentes: a pesar de 
que investigación en psicología cognitiva sugiere abstenerse de investigar 
rasgos cognitivos de forma aislada, muchos de los ejemplos en Modelado 
Diagnóstico Cognitivo (MDC) no tienen en cuenta la estructura jerárquica 
de los atributos implicados. Sin embargo, las estimaciones que se hagan 
con los MDC pueden estar sesgadas cuando no se consideran estas 
relaciones jerárquicas. Método: a través de la simulación y datos reales, 
el presente estudio estudia el impacto de diferentes enfoques MMLE-
EM en los parámetros estimados para los ítems y las personas según 
los modelos G-DINA, DINA y DINO cuando los atributos tienen una 
estructura jerárquica. Se proponen una serie de enfoques de estimación 
que resultan de modifi car la Matriz-Q o la distribución previa. Se investiga 
el impacto de los enfoques propuestos en la precisión en la estimación de 
los parámetros de los ítems y la clasifi cación de atributos. Resultado: para 
la estimación del modelo G-DINA, el tipo de Matriz-Q (es decir, explícita 
vs. implícita) tiene un impacto mayor al de que la distribución previa esté 
estructurada. Por el contrario, una distribución previa estructurada infl uye 
más sobre la estimación de los parámetros de los ítems y las personas en 
el caso de los modelos reducidos. Conclusión: podemos concluir que el 
tipo de Matriz-Q tiene un impacto signifi cativo en la estimación de MDC, 
especialmente en el modelo G-DINA.

Palabras clave: MDC, modelado diagnóstico cognitivo, enfoques de 
estimación, Matriz-Q.

Psicothema 2020, Vol. 32, No. 1, 122-129

doi: 10.7334/psicothema2019.182

 
Received: June 19, 2019 • Accepted: September 30, 2019
Corresponding author: Lokman AKBAY
Burdur Mehmet Akif Ersoy University
Burdur Mehmet Akif Ersoy Universitesi Egitim Fakultesi A Blok Oda:407
1500 Burdur (Turquía)
e-mail: lokmanakbay@gmail.com



Estimation approaches in cognitive diagnosis modeling when attributes are hierarchically structured

123

& Hunka, 2004), and the generalized-DINA model framework (de 
la Torre, 2011).

CDAs can be used for formative purposes, and the feedback 
obtained from analysis of the assessment data can be used to 
modify teaching and learning activities (DiBello & Stout, 2007). 
Attention on CDAs has increased as the political changes, such 
as the No Child Left Behind Act (2001), emphasized the need 
for assessments that are more formative in nature. Thereafter, a 
number of statistical models, referred to as cognitive diagnosis 
models (CDMs) or diagnostic classifi cation models (DCMs), to 
extract diagnostic information from CDAs have been proposed 
(de la Torre & Minchen, 2014). CDMs involve two components: 
The interaction of the attributes with each other in the response 
construction process, and the specifi cation of the attributes needed 
for each item (Chiu, Douglas, & Li, 2009). In CDMs, a JxK  
matrix, referred to as the Q-matrix (Tatsuoka, 1983), is used to 
set the item-by-attribute specifi cations. The Q-matrix is a binary 
matrix of J rows and K columns, where j = 1 …, J,  represents the 
test items, and k = 1, … K  represents attributes measured by the 
test. When item j  requires examinees to possess attribute k for 
a successful response, the q

jk
 element of Q-matrix is coded as 1; 

otherwise, it is coded as 0.
Attributes specifi ed in the Q-matrix may be independent of 

each other, or they may have a dependent structure. Two types 
of attribute dependencies exist: higher-order and hierarchical. 
Attributes are said to follow a higher-order structure when an 
examinee’s mastery probability of each attribute is determined by 
an overall continuous ability (de la Torre & Douglas, 2004). Such a 
structure still allows for all the possible attribute patterns, although 
some patterns are deemed less likely than others. In contrast, under 
a hierarchical attribute structure, attributes have deterministic 
prerequisite relationships, where mastery of basic attributes is 
required for mastering more complex attributes (de la Torre, Hong, 
& Deng, 2010; Leighton et al., 2004). When this is the case, CDMs 
need to consider the hierarchical structure to obtain more accurate 
item and person parameter estimates (Templin & Bradshaw, 
2014). 

Although several studies investigated the effect of impermissible 
attribute patterns in CDM estimation when attributes have a 
hierarchical structure (de la Torre et al., 2010; Templin & Bradshaw, 
2014; Tu, Wang, Cai, Douglas, & Chang, 2018), the impact of 
Q-matrix type (i.e, hierarchically structured and unstructured) 
has not been investigated in these studies. Therefore, the current 
study aims to investigate the impact of different CDM estimation 
approaches, which are based on the constraint or unconstraint status 
of the Q-matrix and the prior distribution used in the estimation 
algorithm, on the item parameter estimates and correct attribute 
classifi cation rates.

Method

Procedure

When item parameters of a given CDM have been pre-
calibrated, the maximum likelihood estimation method can be 
used for attribute estimation (de la Torre, 2009b). For the binary 
response data, the likelihood function of latent class α  becomes:

L X( ) = P Xij =1 i( )j=1
J

i=1
N Xij 1 P Xij =1 i( )

1 Xij

 (1)

where P(X
ij
 = 1 | α

l
) is the response function of a given CDM, 

and X
ij
 is observed response of examinee i to item j. The α pattern 

maximizing the likelihood function becomes the estimated attribute 
profi le of the examinee. When item parameters are unknown, 
marginalized maximum likelihood estimation can be implemented 
using an expectation-maximization (Dempster, Laird, & Rubin, 
1977) algorithm (de la Torre, 2009b). In marginalized maximum 
likelihood estimation, estimates of the model parameters 
(structural parameters) are attained by maximizing the likelihood 
with the attribute class probabilities (incidental parameters , P(α

l
), 

l = 1, …, 2K ). Given a model response function P(X
ij
 = 1 | α

l
), the 

marginalized likelihood is expressed as

L(X) = L Xi l( )l=1
2K

i=1
N p l( ) , (2)

where p(α
l
) is the prior probability of attribute class α

l
. Initial 

item parameters and attribute class probabilities have to be chosen 
in the fi rst iteration of the expectation-maximization algorithm. 
Item parameters and attribute class probabilities are updated in 
each cycle until convergence is achieved. As an alternative to 
maximum likelihood estimation, a Bayesian approach can be used 
for estimation of the examinees’ attribute profi les. In this approach, 
the posterior distribution is obtained using Bayes theorem, and is 
proportional to the likelihood of the observed data times the prior 
distribution, as in, p(α | X) � L(X | α)p(α). Similarly, a Bayesian 
approach can also be used when the item parameters are unknown 
to estimate the item parameters and attribute patterns.

When attributes do not have any hierarchical structure, all of 
the 2K attribute patterns are permissible. Conversely, when the 
attributes are dependent with respect to some hierarchical structure, 
some attribute patterns are not permissible (de la Torre et al., 
2010; Leighton et al., 2004). That is, attribute patterns having an 
attribute without possessing its prerequisite(s) are not allowed. For 
example, Figure 1 demonstrates linear, convergent and divergent 
hierarchies for six attributes (i.e., A1, A2, A3, A4, A5 and A6). The 
linear hierarchy in the fi gure implies that A1 must be mastered 
before mastering A2; A2 must be mastered before mastering 
A3 and so on. Under the linear structure displayed in Figure 1, 
the attribute patterns 000000, 100000, 110000, 111000, 111100, 
111110, and 111111 are permissible, whereas the remaining 57 

Linear Convergent Divergent

A1

A2

A3

A4

A5

A6

A1 A1

A2 A2 A4

A3 A3A4

A5

A5 A6

A6

Figure 1. Three general types of hierarchies defi ned by Leighton et al. 
(2004)
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attribute patterns are not. In the convergent structure, A3 and 
A4 are not prerequisites to one another; however, A1 and A2 are 
prerequisites for both A3 and A4. Furthermore, mastering either 
A3 or A4 satisfi es the prerequisite for mastering A5. Therefore, 
in the convergent structure, on top of the permissible attribute 
patterns in linear structure, fi ve more attribute patterns (i.e., 
110100, 110110, 110111, 111010, and 111011) are permissible. 
The divergent hierarchy allows even more attribute patterns based 
on the prerequisite relationships among given six attributes. Under 
these structures, instead of 26 attribute patterns, only seven, 12 and 
16 latent classes are permissible under the linear, convergent, and 
divergent structures, respectively. All attribute patterns allowed 
by these three structures are given in Table 1. Attribute structure 
can be incorporated in the expectation-maximization algorithm, 
specifi cally, by manipulating the prior distribution. Although we 
cannot precisely know the distribution of the permissible latent 
classes, we can assign a prior probability of zero to theoretically 
impermissible attribute classes by a careful consideration of the 
hierarchical structure of the attributes. In such cases, imposing 
zero prior probabilities for the impermissible latent classes yields 
a structured prior distribution.

In cases where attributes have a hierarchical structure test 
items may or may not explicitly require the more basic attributes 
(i.e., prerequisites) along with the more complex attributes for a 
successful response (de la Torre et al., 2010). De la Torre et al. 
(2010) provided an example where they argue that taking the 
derivative presupposes knowledge of basic arithmetic operation, 
but, an item can be constructed such that it requires ability to 
differentiate without basic arithmetic operations. Therefore, a 
Q-matrix for noncompensatory models can be developed by either 
specifying only explicitly required attributes or specifying both 
explicitly and implicitly required attributes. For example, when 
attributes have a linear structure as displayed in Figure 1, the 
q-vector of an item explicitly requiring only the third out of the 
six attributes may be represented as 001000 or 111000 based on 
the explicitly required attribute only or on both the explicitly and 
implicitly required attributes, respectively.

In this manuscript, Q-matrices that specify only the explicitly 
required attributes will be referred to as explicit Q-matrix, whereas 
those that specify implicitly required attributes will be referred 
to as implicit Q-matrix. For a disjunctive model, only the most 
basic attribute is specifi ed in the implicit Q-matrix even though the 
item also probes attributes that are more complex. For instance, 
an item explicitly requiring fi rst three attributes under the linear 
structure given in Figure 1 may be represented as either 100000 by 
an implicit Q-matrix, or 111000 by an explicit Q-matrix. Impact 
of implicit and explicit Q-matrices on CDM estimation under 
hierarchical attribute structures has not been examined. Hence, to 
fi ll this gap, the current study investigates the impact of Q-matrix 
types when attributes follow a hierarchy.

Simulations

A simulation study was designed to understand the impact of 
Q-matrix type, if any, on item parameter estimation and correct 
attribute classifi cation when the attributes are hierarchical. To 
accomplish this, explicit and implicit Q-matrices were crossed 
with the unstructured and structured forms of prior distributions. 
This resulted in four different approaches that can be employed 
in CDM estimations. Three general attribute hierarchies (i.e., 
linear, convergent, and divergent) with six attributes, as defi ned 
by Leighton et al. (2004), were considered. The explicit Q-matrix 
is also given in Table 1. Explicit Q-matrix consisted of items 
requiring one, two, and three attributes. Although the fi rst 18 
items designed to measure each of the six attributes equally, two 
more items (i.e., item 19 and item 20) were added to have at least 
two items differentiating adjacent latent classes (e.g., 000000 and 
100000, and 111110 and 111111) for implicit Q-matrices.

The impact of the estimation approaches were studied under 
various conditions, where two levels of item quality and three 
generating models (i.e., G-DINA, DINA, and DINO) were 
employed. The item quality was defi ned by the item discrimination 
(i.e., 1 – s – g) for higher and lower item quality levels. For 
the higher-quality (HQ) items, the lowest and highest success 

Table 1
Permissible attribute patterns and the explicit Q-matrix

Permissible attribute patterns Explicit

Linear Convergent Divergent Q-matrix

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0
1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0
1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0
1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0
1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0
1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1

1 1 1 1 0 0 1 1 1 0 0 0
1 1 1 1 0 1 0 1 1 1 0 0
1 1 1 1 1 0 0 0 1 1 1 0
1 1 1 1 1 1 0 0 0 1 1 1

1 0 0 0 1 1
1 1 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 1
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probabilities (i.e., P(0) and P(1)) were generated from U(0.05, 
0.20) and U(0.80, 0.95), respectively. For the lower-quality (LQ) 
items, the lowest and highest success probabilities were drawn from 
U(0.15, 0.30) and U(0.70, 0.85), respectively. In other words, the 
slip and guessing parameters to generate the data were drawn from 
U(0.05, 0.20) and U(0.15, 0.30) for higher and lower item quality 
conditions, respectively. Attributes were uniformly generated 
following the linear, convergent, and divergent hierarchies.

Two-levels of item quality, three CDMs, and three general 
hierarchy types were crossed to form the simulation conditions. In 
all conditions, the number of items, number of measured attributes 
and number of examinees were fi xed to 20, 6, and 1000, respectively. 
Moreover, the number of replication for each condition was fi xed 
to 100. To determine the factors and their levels, similar theoretical 
studies (e.g., de la Torre & Lee, 2010; de la Torre, Hong, & Deng, 
2010) and the results of a review study on the empirical CDM 
applications (i.e., Sessoms & Henson, 2018) were considered. All 
the factors with varying levels are summarized in Table 2.

For the estimation purposes, only the generating models were 
fi tted to corresponding data to be consistent with the aim of the 
simulation study, which is to understand what gains, if any, are 
associated with the different estimation approaches. Although most 
of the time the true model that is associated with the data may not 
be known a priori, one may select the best fi tting model based on 
the relative fi t statistics, such as AIC (Akaika information criterion) 
and BIC (Bayesian information criterion). Throughout the study 
data generation and model estimation conducted in R language and 
statistical computing environment using R-package GDINA (Ma & 
de la Torre, 2018). It should be noted that attribute estimation was 
based on expected a posteriori (EAP) estimator, which is the mean 
of the posterior distribution. Specifi cally, EAP is the probability of 
mastering an attribute and it is converted into 1 or 0 (i.e., mastery 
and nonmastery) by comparing it to a threshold value such as .50.

To determine the impact of the Q-matrix design on item 
parameter estimation accuracy and precision, the absolute bias 
and the root mean squared error (RMSE) of the estimates across 
100 replications were computed. The bias and RMSE for guessing 
are defi ned as

biasg =
1
JxR

ĝ jr g jrr=1
R

j=1
J

 (3)

and

RMSEg =
1

J

1

R
ĝ jr g jr( )r=1

R 2
j=1
J ,

 (4)

respectively, where J is the number of items; R is the number of 
replications; ĝ

jr
 is the guessing parameter estimate for item j in 

replication r; g
jr
 is the generating guessing parameter for item j 

in replication r. Note that the same formulas can be used for slip 
parameter, where g is replaced by s. Recall that the number of item 
parameters in the G-DINA model is a function of the number of 
required attributes, which may be different for the explicit and 
implicit Q-matrices. Therefore, not all item parameters are directly 
comparable for different types of estimation approaches employing 
an explicit or implicit Q-matrix. Therefore, we only considered the 
recovery of the lowest and highest success probability parameters 
in computation of item bias and RMSE.

The correct attribute classifi cation rates at the individual-
attribute level (i.e., correct attribute classifi cation rate; CAC) and 
at the attribute-vector level (i.e., correct vector classifi cation rate; 
CVC) were also investigated. The CAC and CVC can be computed 
using the formulae

 
CACk =

I âik
r aik

r

NR
i=1
N

r=1
R

 (5)

and

CVC =

I âi
r ai

r

NR
i=1
N

r=1
R ,

 (6)

respectively, where N is the total number of examinees; I is the 
indicator function; ar

ik
 is true mastery status of examinee i for 

attribute k in replication r; âr
ik
 is the EAP estimate of examinee i for 

attribute k in replication r; αr
i
 is true attribute pattern of examinee 

i in replication r ; and α̂r
i
 is the estimated attribute pattern for the 

same examinee in the same replication.

Results

Simulation results
 
Results on Model Parameter Estimation

The absolute bias and RMSE of model parameter estimates 
obtained from the four estimation approaches are provided in the 
upper and lower panels of Table 3, respectively. The observed bias 
and RMSE displayed similar patterns across the higher and lower 
item quality conditions. Although the higher quality items resulted 
in smaller bias and RMSE, we discussed only the results based on 
lower quality items as the differences produced by the estimation 
approaches are magnifi ed under this condition. For the G-DINA 
model, in comparison to use of explicit Q-matrix, using an implicit 
Q-matrix resulted in elevated bias and RMSE. In other words, the 
use of explicit Q-matrix better recovered these lowest and highest 
success probability parameters. Recoveries of these parameters 
were even better when the estimation involved a structured prior 
distribution. Therefore, under the G-DINA model, model parameter 
estimates were best when an explicit Q-matrix was used along with 
a hierarchically structured prior distribution.

The bias and RMSE results for the DINA and DINO models 
are also given in Table 3. Although all four estimation approaches 
had good recovery of the item parameters; the best results (i.e., 

Table 2
Simulation factors

Type of 
CDM

Prior 
distribution

Type of 
Q-matrix

Type of 
hierarchy

Item quality

G-DINA
DINA
DINO

Structured
Unstructured

Explicit
Implicit

Linear
Convergent
Divergent

Higher Quality
Lower Quality

Note: CDM = cognitive diagnosis model; G-DINA = generalized deterministic input, 
noisy “and” gate model; DINA = deterministic input, noisy “and” gate model; DINO = 
deterministic input, noisy “or” gate model
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the lowest bias and RMSE) were obtained when a structured 
prior distribution was employed in the estimation. When the 
prior was structured, the Q-matrix type had no impact on 
attribute classifi cation (i.e., results were almost identical under all 
conditions). However, when prior distribution was unstructured, 
use of implicit Q-matrix produced the lowest bias and RMSE. The 
bias and RMSE levels were quite similar to the ones obtained with 
structured prior distribution. Slightly elevated bias and RMSE 
were observed when the explicit Q-matrix was used and all latent 
classes are considered in the estimation. These elevated bias and 
RMSE were observed especially on the guessing parameter when 
the DINA model was fi tted; and on the slip parameter when the 
DINO was fi tted.

In comparison to the parameter recovery of the general model, 
we observed that all four estimation approaches resulted in smaller 
bias and RMSE for the reduced models. The difference in the 
performance of the estimation approaches may be attributed to the 
different model complexities of the CDMs (e.g., the GDINA model 
complexity is increased by the number of attributes required for the 
item). Moreover, the impact of implicit and explicit Q-matrices were 
different for the general and reduced models. In the general model, 
employment of implicit Q-matrix resulted much better item parameter 
recovery; whereas improved parameter estimation observed with 
explicit Q-matrix in the estimation of reduced models.

 
Results on Attribute Estimation

The CAC and CVC rates of the models by the estimation 
approaches are documented in Table 4. Results under lower and 
higher item quality conditions displayed similar patterns; however, 

we only discussed the higher item quality conditions to emphasize 
the importance of Q-matrix type even when items in a test are of 
very good quality. The overall pattern indicates that higher CAC 
and CVC rates were obtained with the explicit Q-matrix use when 
the generating and fi tted model was the G-DINA model. Under the 
G-DINA model, the correct classifi cation rates were the highest 
when explicit Q-matrix was used along with a structured prior 
distribution; and the lowest attribute and vector classifi cation rates 
were obtained when the implicit Q-matrix was used along with 
an unstructured prior distribution. For example, for the G-DINA 
model, under the linear hierarchy, CVC rates of the explicit and 
implicit Q-matrices were .841 and .110, respectively, when an 
unstructured prior distribution was used. These rates went up to 
.865  and .588  when a structured prior distribution was employed 
in the estimation.

The DINA and DINO model attribute classifi cation results 
showed that under the both models the highest CAC and CVC 
rates were observed when impermissible attribute patterns were 
excluded from the estimation via a structured prior distribution. 
Under the structured prior conditions, correct attribute and vector 
classifi cation rates of the two types of Q-matrices were almost 
identical. In contrast, when an unstructured prior distribution was 
employed, explicit Q-matrix produced higher CAC and CVC rates 
when generating and the fi tted model was the DINA. For instance, 
when all attribute patterns were permissible, the observed differences 
in the CVC rates in using explicit and implicit Q-matrix were 1.2%, 
3.7%, and 2.5% for the linear, convergent, and divergent cases, 
respectively. For the unstructured prior distribution conditions, 
in contrast to the DINA model cases, implicit Q-matrix yielded 
higher CAC and CVC rates when the generating and fi tted model 

Table 3
Item parameter bias and RMSE under lower item quality conditions

Guessing parameter Slip parameter

Explicit Q Implicit Q Explicit Q Implicit Q

Statistic Model Hierarchy Unstr. Struc. Unstr. Struc. Unstr. Struc. Unstr. Struc.

bias G-DINA Linear .030 .025 .174 .061 .032 .025 .161 .055

Convergent .032 .027 .173 .073 .033 .027 .159 .060

Divergent .049 .042 .148 .074 .034 .028 .082 .043

DINA Linear .030 .019 .019 .019 .023 .023 .023 .023

Convergent .028 .020 .021 .020 .024 .024 .024 .024

Divergent .033 .027 .028 .027 .025 .024 .024 .024

DINO Linear .022 .022 .024 .022 .029 .021 .024 .021

Convergent .025 .024 .026 .024 .029 .021 .027 .021

Divergent .038 .036 .040 .037 .026 .020 .022 .020

RMSE G-DINA Linear .040 .031 .186 .090 .041 .032 .172 .071

Convergent .041 .034 .187 .103 .043 .034 .171 .077

Divergent .063 .052 .171 .098 .043 .037 .105 .057

DINA Linear .036 .024 .024 .024 .029 .029 .029 .029

Convergent .035 .026 .026 .025 .030 .029 .029 .029

Divergent .040 .034 .034 .033 .031 .030 .030 .030

DINO Linear .028 .027 .031 .027 .036 .027 .030 .027

Convergent .030 .030 .032 .030 .035 .026 .033 .026

Divergent .047 .045 .049 .045 .032 .026 .027 .025

Note: Unstr. = Unstructured prior distribution; Struc. = Structured prior distribution
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was the DINO. For instance, when unstructured prior distribution 
was involved; the observed differences in the CVC rates of implicit 
and explicit Q-matrix use are 3.0%, 1.0%, and 1.2% for the linear, 
convergent, and divergent cases, respectively.

In general, the simulation results indicated that impact of 
Q-matrix type on the estimation of the G-DINA model was much 
higher in comparison to its impact on the reduced models. For the 
G-DINA model estimation, the impact of Q-matrix type was higher 
than impact of prior distribution type. In contrast, type of prior 

distribution was more infl uential on item and person parameter 
estimations for the reduced models. When prior distribution was 
structured, the Q-matrix type had almost no infl uence on item and 
person parameter estimation.

Real Data Analysis

We also conducted a numerical analysis to understand how 
the estimation approaches perform when real data involved. The 

Table 4
Correct attribute and vector classifi cation rates under higher item quality conditions

Correct attribute classifi cation rates

CDM Hierarchy Q Prior A1 A2 A3 A4 A5 A6 CVC

G-DINA Linear Explicit Unstr. .983 .971 .968 .967 .959 .974 .841

Struc. .986 .976 .974 .972 .966 .978 .865

Implicit Unstr. .965 .887 .773 .695 .698 .600 .110

Struc. .983 .945 .899 .861 .883 .958 .588

Convergent Explicit Unstr. .983 .969 .948 .954 .966 .976 .824

Struc. .986 .974 .951 .957 .972 .980 .841

Implicit Unstr. .953 .882 .851 .832 .681 .605 .219

Struc. .985 .968 .924 .931 .925 .960 .747

Divergent Explicit Unstr. .987 .940 .927 .958 .922 .950 .732

Struc. .993 .942 .933 .966 .925 .951 .750

Implicit Unstr. .975 .933 .846 .951 .890 .910 .614

Struc. .992 .940 .927 .963 .921 .946 .738

DINA Linear Explicit Unstr. .966 .960 .975 .974 .963 .995 .856

Struc. .967 .965 .984 .984 .984 .997 .894

Implicit Unstr. .967 .954 .973 .965 .963 .993 .844

Struc. .967 .965 .984 .984 .984 .997 .894

Convergent Explicit Unstr. .966 .957 .978 .943 .973 .996 .843

Struc. .966 .961 .982 .950 .987 .998 .868

Implicit Unstr. .966 .950 .973 .922 .964 .994 .806

Struc. .967 .962 .982 .950 .987 .998 .869

Divergent Explicit Unstr. .981 .941 .981 .947 .948 .976 .816

Struc. .983 .943 .984 .951 .953 .977 .829

Implicit Unstr. .983 .938 .977 .945 .931 .970 .791

Struc. .983 .943 .984 .951 .953 .977 .829

DINO Linear Explicit Unstr. .996 .965 .972 .975 .957 .965 .854

Struc. .997 .986 .985 .983 .962 .966 .893

Implicit Unstr. .997 .985 .984 .982 .959 .963 .884

Struc. .997 .986 .985 .983 .962 .966 .892

Convergent Explicit Unstr. .996 .974 .942 .977 .959 .966 .844

Struc. .998 .986 .950 .980 .963 .967 .868

Implicit Unstr. .998 .985 .941 .979 .962 .964 .854

Struc. .998 .986 .950 .980 .963 .967 .868

Divergent Explicit Unstr. .996 .912 .921 .981 .907 .937 .718

Struc. .998 .931 .921 .986 .908 .937 .738

Implicit Unstr. .999 .930 .916 .986 .906 .937 .730

Struc. .999 .931 .921 .986 .908 .937 .737

Note: Q = Q-matrix; Prior = Prior distribution; A1-A6 = Measured attributes; CVC = Correct vector classifi cation rate; Unstr. = Unstructured prior distribution; Struc. = Structured prior 
distribution
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analyzed data consisted of 2,922 examinees’ binary responses 
to 28 items in the grammar section of the Examination for 
the Certifi cate of Profi ciency in English (ECPE), which was 
developed and administered by the University of Michigan 
English Language Institute in 2003. The dataset and the explicit 
Q-matrix are available in the ‘CDM’ package (Robitzsch, Kiefer, 
George, & Uenlue, 2019) in R software environment. The dataset 
have been analyzed in several studies (e.g., Chiu et al., 2009; 
Henson & Templin, 2007; Templin & Bradshaw, 2014). Templin 
and Bradshaw (2014) reported a linear hierarchy among these 
three attributes measured by the ECPE grammar test. Based on 
this described linear hierarchy, Lexical rules (A1) is a prerequisite 
attribute to Cohesive rules (A2), which in turn is a prerequisite 
attribute to Morphosyntactic rules (A3).

The G-DINA model was used in the analysis for examinee 
classifi cation. Model fi t results obtained via all four estimation 
approaches are presented in Table 5. When we compare the model 
fi t statistics resulted from employment of explicit Q-matrix, AIC, 
BIC, and the likelihood ratio test (LRT: χ2 = 22.69, df = 4, p – 
value = .0001) indicated that the G-DINA model allowing all latent 
classes better fi ts to the data. Likewise, under the implicit Q-matrix, 
the G-DINA model better fi tted to the data when all latent classes 
were permissible (LRT: χ2 = 115.92, df = 4, p – value = .0001). 
Therefore, regardless of the Q-matrix type, model selection results 
show that a model constrained by the linear hierarchy does not fi t 
to the data as well as the unconstrained model. 

When the G-DINA model let all latent classes in the estimation, 
implicit and explicit Q-matrix classifi cations were compared 
to determine the attribute classifi cation agreements between the 
two approaches. Individual attribute level and attribute vector 
level agreements were computed to be .966,  .466, .836, and 
.356 for the three attributes and attribute vector, respectively. 
When an unstructured prior distribution is employed, as shown 
in the simulation study earlier, when the G-DINA model is fi tted 
the explicit Q-matrix provides higher correct classifi cation rates 
than its implicit counterpart does. The largest disagreement is 
on the second attribute, which may also be due to the fact that 
implicit Q-matrix follow a linear hierarchy that might not be 

accurate. Furthermore, in their study, Tu et al. demonstrated that 
when attributes are hierarchical, estimation approach excluding 
impermissible attributes results in good data-model fi t when fi tting 
model is the G-DINA (2018). However, in our analysis of the ECPE 
data, fi t of the G-DINA model with unstructured prior distribution 
yielded better data-model fi t (i.e., lower AIC and BIC). In the 
light of this information, we can argue that either the Q-matrix or 
the specifi ed hierarchical structure might be inaccurate so that it 
requires further investigation.

Discussion

CDMs are useful tools that provide fi ne-grained information on 
examinees’ strengths and weaknesses, which in turn can be used 
to inform classroom instructions and learning. Although CDAs 
primarily serve for formative assessments in low-stakes contexts, 
we cannot discount their potential use in high-stakes testing. In such 
cases, the use of an estimation approach that results in more accurate 
item and person parameter estimates, even if the improvement 
is slight, might be vital. When attributes follow a hierarchical 
structure, more accurate item parameter estimation and examinee 
classifi cation may be achieved by structuring either the Q-matrix 
or prior distribution in the model estimation procedure. Then, 
potential contribution of the distinct estimation approaches need to 
be considered when attributes follow a hierarchical structure. 

This study was designed to understand the impact of an implicit 
Q-matrix on item parameter estimation and examinee classifi cation 
rate when attributes follow a hierarchy. Study results indicated that 
employment of explicit rather than implicit Q-matrix in the G-DINA 
model estimation yielded signifi cant increase in item parameter 
estimation accuracy and correct attribute classifi cation rate. 
Results also indicated that, for the DINA and DINO models, both 
the implicit and explicit versions of the Q-matrix yielded almost 
identical item parameter estimates and examinee classifi cations 
when the prior distribution was already structured. However, under 
unstructured attribute conditions, some differences on item and 
person parameters emerged due to Q-matrix type. When the prior 
distribution is not structured, using an explicit Q-matrix improves 
the classifi cation accuracy of the DINA model; while using an 
implicit Q-matrix increases the correct classifi cation rates of the 
DINO model.

When the prior distribution or Q-matrix is structured, hierarchy 
is assumed to be known. However, in practice, hierarchical structure 
among the attributes may not always be well established. Thus, 
incorrect specifi cation of the hierarchical attribute structure may 
adversely impact model estimations. In such cases, item parameter 
estimates and examinee classifi cations may be adversely affected 
by structured prior distribution or Q-matrix. Therefore, correctly 
identifying hierarchical structure is of vital importance. To this 
end, development of statistical methods to validate expert-based 
hierarchical structures can be a potential future research direction. 
Also, it would be interesting to see the impact of unbalanced, 
misspecifi ed, and incomplete (i.e., not all possible single-attribute 
items included) Q-matrices on model estimation approaches.

Table 5
Model fi ts

Unstructured prior 
distribution

Structured prior 
distribution

Explicit Q-matrix AIC = 85642.40 AIC = 85665.09

BIC = 86126.79 BIC = 86149.47

-2LL = 85480.40 -2LL = 85503.09

Implicit Q-matrix AIC = 85407.82 AIC = 85523.74

BIC = 86310.81 BIC = 86426.72

-2LL = 85105.82 -2LL = 85221.74

Note: AIC = Akaika information criterion; BIC = Bayesian information criterion; and -2LL 
= Deviance (-2 times loglikelihood)
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