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In various fi elds of psychology, and especially in the clinical 
setting, it is common to perform interventions. Evaluating whether 
interventions have an effect generally requires determining when 
a change occurs. However, there is no single method to establish 
the occurrence of a change (see, for example, Ogles, Lunnen, & 
Bonesteel, 2001). In addition to the therapist’s criteria, different 
sources can be taken into consideration. 

It is very common to study change through the analysis of the 
patients’ answers to scales or questionnaires (distribution-based 
methods, see Crosby, Kolotkin, & Williams, 2003). This is a 
widely-used strategy in psychology, with a long tradition of using 
tests to obtain measurements. It has gained momentum over the 
last two decades also, among others, in the fi eld of medicine to 

evaluate health-related quality of life (Norman, Sridhar, Guyatt, 
& Walter, 2001).

However, at least two perspectives can be adopted for assessing 
whether the answers to a scale or questionnaire show a reliable 
change: the group or the individual. Both perspectives are 
applicable to pre-post designs. In the group perspective, the goal 
is to evaluate whether the group, as a whole, has experimented a 
change. This is usually done by comparing the pre- and post-test 
means (or other measures of central tendency) using a signifi cance 
test or an effect size (ES) measure (Cohen, 1988; Grissom & Kim, 
2012; Pek & Flora, 2018). This strategy is based on the center of the 
distributions, and changes detected through such strategy has been 
termed average based change (Estrada, Ferrer, & Pardo, 2019).

The individual perspective evaluates which particular 
individual experienced a change by applying indices that specify 
the smallest change that cannot be attributed to random sample 
fl uctuations or measurement errors (Crosby et al., 2003; Jacobson 
& Truax, 1991). This minimal change amount is usually referred 
to as the statistically reliable change, minimal detectable change, 
or, simply, reliable change (see, for example, Beaton, Bombardier, 
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Abstract Resumen

Background: Although average-based effect size (ES) and percentage of 
individual changes (PIC) are quite different, they are not independent: 
larger ESs lead to higher PICs. However, this association has not been 
suffi ciently explored. Method: We analyzed this association based on 
data simulated in the context of a pre-post design, with and without control 
groups. We simulated various distributions, sample sizes, degrees of test-
retest reliability, effect sizes, and different variances in pre- and post-test. 
Results: The PIC is closely associated with the ES across a wide variety of 
empirically frequent scenarios. In the “single group pre-post designs”, the 
linear regression model shows R2 values above 0.90. In the “control group 
pre-post designs”, the linear regression model shows R2 values above 0.80. 
These results were found even when the post-test variability differed from 
that of the pre-test, replicating, extending and generalizing the fi ndings in 
previous studies. Conclusions: (1) In the absence of information about the 
PIC, the ES may be used to estimate this percentage. (2) The PIC is useful 
in interpreting the meaning of ES measures.

Keywords: Individual change, group change, effect size, percentage of 
changes, reliable change index.

Cambio en el centro de la distribución y en las puntuaciones 
individuales: relación con distribuciones heteroscedasticas pre y post 
prueba. Antecedentes: aunque el tamaño del efecto (ES) y el porcentaje 
de cambios individuales (PIC) son cosas distintas, no parecen ser 
independientes: mayores ESs conllevan mayores PICs. Pero esta relación 
todavía no ha sido sufi cientemente explorada. Método: estudiamos dicha 
relación mediante datos simulados en el contexto de un diseño pre-post 
con y sin grupo control. En la simulación se han utilizado diferentes 
distribuciones, tamaños muestrales, niveles de fi abilidad test-retest, 
efectos de varios tamaños y distintas variabilidades en el pre- y en el 
post-test. Resultados: el PIC está estrechamente relacionado con el ES. 
En los diseños pre-post, el modelo de regresión lineal ofrece valores R2 
por encima de 0,90. En los diseños pre-post con grupo control, valores 
R2 por encima de 0,80. Estos resultados se mantienen incluso cuando la 
variabilidad del post-test es distinta de la del pre-test. Conclusiones: (1) 
cuando no se tiene información sobre el PIC, el tamaño del efecto puede 
utilizarse para estimar ese porcentaje; (2) el PIC sirve para precisar el 
signifi cado de las medidas del tamaño del efecto.

Palabras clave: cambio individual, cambio grupal, tamaño del efecto, 
porcentaje de cambios, índices de cambio fi able.
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Katz, & Wright, 2001; de Vet et al., 2006; Osma, Sánchez-Gómez, 
& Peris-Baquero, 2018). This strategy, based on individual scores, 
has been termed individual based change (Estrada et al., 2019)

These two perspectives appear to provide quite different 
information. For example, Schmitt and Di Fabio (2004, pp. 1008-
1009), claimed that “statistically signifi cant change at the group 
level may not be signifi cant at the individual level (…). Mean 
changes for a group may be the result of few individuals with 
relatively large changes, or numerous individuals with relatively 
small changes”. Similarly, Vindras, Desmurget and Baraduc (2012, 
p. 2) mentioned that “the effect of a factor can be signifi cant for 
every individual (compared to intra-individual variability) while 
Student and Fisher tests yield a probability close to one if the 
population average is small enough”.

These previous works illustrate the assumption (frequent in 
clinical literature) that group and individual change are different, 
because the change in the center of the distribution does not 
inform about which particular individuals changed. However, 
there is sound evidence that a strong association exists between 
the two approaches: larger displacements from the center of the 
distribution are associated with a larger percentages of individual 
changes (PIC). 

For example, Norman et al. (2001) found that the effect size 
following an intervention (i.e., the amount of change in the center 
of the distribution) is the factor with the strongest association 
with the percentage of subjects who benefi t from the intervention. 
Lemieux et al. (2007) came to a similar conclusion, using real data, 
instead of simulated. 

In a recent and broader simulation study, Estrada et al. (2019), 
found a strong association between group change (ES, quantifi ed as 
effect size measurements) and the percentage of individual changes 
(PIC, computed from reliable change indices). These results 
allowed specifying: (a) the function describing the association 
between the two perspectives; and (b) the fi t of such function. 

Although Estrada et al. (2019) found a strong association in a 
wide variety of realistic conditions, they did not explore situations 
involving a pre-post change in the scores’ variability. They modifi ed 
the distributions’ centers, but kept their variances constant across 
time points. However, it is entirely possible (and frequent in 
empirical scenarios) to fi nd a different degree of dispersion in the 
pre- and post-test distributions. Indeed, the scores’ variability can 
change as an effect of the intervention applied.

For example, Foster, Harrison, Draheim, Redick, and Engle 
(2017) found a “magnifi cation effect” in a working memory training 
study: participants with higher initial levels showed larger gains after 
a 20-session program. In contrast, other researchers have proposed 
a “compensation effect”: Training strategies have a greater impact 
on performance when subjects’ baseline performance is low (for 
a succinct review, see Smoleń, Jastrzebski, Estrada, & Chuderski, 
2018). Similarly, in the clinical fi eld, it is reasonable to expect that, 
when treating individuals who suffer depression, those with less 
acute levels will show smaller gains because they are closer to the 
nonclinical population. These individual differences in pre-post 
change can lead, in turn, to an increase (magnifi cation) or decrease 
(compensation; Macías, Valero-Aguayo, Bond, & Blanca, 2019) 
in the distribution’s variability. The available literature provides 
no information about the relation between average and individual 
based change in these relevant scenarios.

Therefore, the present study pursues to extend what is already 
known by: (a) evaluating whether the association found in previous 

studies between average based change (ES) and individual based 
change (PIC) is replicated when the pre- and post-test distributions 
have different variability; (b) if the association is replicated, 
describing its shape, proposing a mathematical function able 
to capture it, and quantifying the fi t of such function; and (c) 
determining under which conditions the association can be found 
(normality, slight, moderate or severe departures from normality, 
etc.) and how different conditions affect it (in particular, the change 
variability from pre- to post-test). 

Method

Procedure

We simulated data corresponding to two of the most commonly-
used designs in the health and behavioral sciences fi eld: a “single 
group pre-post design” (pre-post design) and a “pre-post design 
with control group” (control-pre-post design). Therefore, we 
generated scenarios in which a group of subjects (two groups in 
control-pre-post design) had the same variable measured at two 
different time points (generally, before and after an intervention) 
with the goal of evaluating whether a change occurred between 
them. Including a single group design is important because it is 
common in applied contexts, and the indices for individual change 
were developed in this context. On the other hand, including a 
control group (ideally randomly assigned) is the only way to 
attribute change to the intervention (Shadish, Cook, & Campbell, 
2002).

Simulated conditions. We manipulated the following criteria:

a. Change in the center of the distribution (i.e., effect size). 
Quantifi ed using the standardized mean of the pre-post 
differences: d (see the section Data Analysis below). It ranged 
between 0 and 3.6, in steps of 0.3 points. These values were 
chosen to enable gathering information on a wide range of 
effects: from a null effect to an extremely large one (allowing 
the PIC to range between 0 and 100%). With the exception 
of the “null effect” condition, we assumed that the average 
scores increased between pre- and post-test. Therefore, given 
that the pre-post differences were calculated by subtracting 
the pre- from the post-test score, we worked with positive 
effects. Consequently, we applied one-tailed right tests in all 
the conditions with non-null effects, and two-tailed tests for 
the condition with d=0.

 In control-pre-post designs, the effect size for the experimental 
group was modifi ed according to the simulation scheme, but 
was always constrained to zero in the control group (see the 
Simulation Process below).

 It is important to point out that d was fi xed for the population. 
This implies that: (a) the empirical values of d differed 
in each replication and (b) centered on each of the values 
chosen for d, a random distribution of individual changes was 
generated. Therefore, in each sample, each individual case 
experimented a different amount of change. The variance of 
that change distribution was established depending on the 
criteria b and e (see below). 

b. Degree of dispersion of the distribution of the experimental 
group post-test scores (i.e., standard deviation of post-test 
scores of the experimental group). The pre-test scores of the 
experimental group were generated by assigning the value 



Eduardo Estrada, José Manuel Caperos, and Antonio Pardo

412

of 1 to the standard deviation; the post-test scores for the 
experimental group were generated assuming a change in 
the variability of the scores after the intervention, with the 
following standard deviations: 0.25, 0.5, 1, 2 and 4. In the 
control group and in the pre-test of the experimental group, 
the standard deviation was always one.

c. Sample size (n). Three sample sizes (20, 50, 100) were 
chosen to examine samples that are typically considered 
small, medium and large (see, Crawford & Howell, 1998). 
In the control-pre-post design, we used groups of the same 
size.

d. Pre-post correlation (R
XY

): 0.3, 0.5, 0.7 and 0.9. These values 
were chosen to represent the range of values that are usually 
found in applied contexts (Nunnally & Bernstein, 1994; 
Pedhazur & Schmelkin, 1991). The Pearson correlation 
coeffi cient was used to quantify this association. In the 
control-pre-post design, we imposed the same pre-post 
correlation in both groups. 

e. Shape of the pre- and post-test distributions. Previous 
literature has shown that empirical data sets often depart 
from normality (Blanca, Arnau, López-Montiel, Bono, & 
Bendayan, 2013). Therefore, we established seven values 
for skewness (from extreme negative, g

1
=−3, to extreme 

positive, g
1
=3) and four degrees of kurtosis (from normal, 

g
2
=0, to extreme, g

2
=18),  combined as follows: (1) extreme 

negative skewness: g
1
=−3, g

2
=18; (2) moderate negative 

skewness: g
1
=−2,  g

2
=9; (3) slight negative skewness: g

1
=−1, 

g
2
=2; (4) normality: g

1
=0, g

2
=0; (5) slight positive skewness: 

g
1
=1, g

2
=2; (6) moderate positive skewness: g

1
=2, g

2
=9; and 

(7) extreme positive skewness: g
1
=3, g

2
=18 (note that the 

degree of kurtosis is partially conditioned by the degree 
of skewness). Less than 5% of empirical distributions are 
more extreme than those simulated here (Blanca et al., 
2013). In the control-pre-post design, the same shape of the 
distribution was imposed for both groups. 

Simulation process. The combination of the fi ve criteria 
described above resulted in 13 × 5 × 3 × 4 × 7=5,460 conditions. For 
each of these conditions, 200 samples were generated, including 
one experimental group and one control group (1,092,000 samples 
in total). Simulation was implemented using the “MatLab 2011a” 
software.

For each replication, we generated two independent matrices, 
X1=(X

1
*,Y

1
*) and X2=(X

2
*,Y

2
*), each matrix with n pairs of scores 

in two uncorrelated variables. These scores were generated using 
the Pearson distribution system. Both variables were assigned the 
same mean, standard deviation, skewness, and kurtosis. Initially, 
all the population means equaled zero and the standard deviations 
equaled one. Skewness and kurtosis were modifi ed systematically 
according to the g

1
 and g

2
 values described in the preceding section. 

The X and Y variables were generated randomly to guarantee that 
post-test scores could be the same, higher, much higher, lower, 
or much lower than the corresponding pre-test scores, as usually 
occurs in empirical scenarios. Therefore, this initial step ensured 
that each case experimented a different amount of change.

To impose the desired degree of pre-post correlation, in the 
second step of the process we multiplied the X1 and X2 matrices 
by the Cholesky decomposition (MatLab cholcov function) of the 
correlations matrix (R) corresponding to the chosen R

XY
 correlations 

(0.30, 0.50, 0.70, 0.90). As a result of this step, we obtained a 

matrix M1 with two variables (X
1
=pre_exp; Y

1
=post_exp) for the 

experimental group and a matrix M2 with two variables (X
2
=pre_

ctrl; Y
2
=post_ctrl) for the control group, distributed according to 

pre-established conditions and correlating X
1
 with Y

1
 and X

2
 with 

Y
2
 with a value similar to that chosen for each condition.
Finally, we modifi ed the variable Y

1
 (experimental group post-

test scores) to apply the expected effect. This modifi cation implied 
adding, to all post-test scores, the result of multiplying the standard 
deviation of the pre-post differences by a value ranging from 0 
to 3.6 points, with increments of 0.3. No value was added to the 
control group post-test scores.

Data analysis

First, after generating the 1,092,000 samples, we verifi ed whether 
the characteristics of the simulated distributions corresponded with 
the simulation values by computing descriptive of central tendency, 
dispersion, shape, and pre-post correlations for every sample. 

Second, to quantify the group change in the single group 
conditions, we calculated Cohen’s (1988) d by dividing, in each 
sample, the difference between the post- and pre-test measurements 
(M

pre
, M

post
) by the standard deviation of the pre-post differences:

dpp =
Mpost –Mpre

Sdif

(“pp”=pre-post design). To quantify the group change in control-
pre-post design, we used two different statistics: Hays’s ω2 and 
Cohen’s d. The statistic ω2 (omega-squared) associated with the 
effect of the interaction between the between-subject factor (the 
groups) and the within-subject factor (the pre- and post-test time 
points) enables capturing the difference between the groups by 
comparing the mean change observed in the experimental group 
with the mean change observed in the control group (Hays, 1988; 
Kirk, 2013). In a control-pre-post design:

ˆ =
glAB FAB 1( )

glAB FAB 1( ) + n

where F
AB

 is the F statistic associated with the interaction effect, 
gl

AB
 are the degrees of freedom and n is the total number of scores 

in the dataset.
We chose a version of Cohen’s standardized difference proposed 

to quantify the interaction effect in the context of meta-analysis of 
control-pre-post designs (cpp, Grissom & Kim, 2012, pp. 90-92):

dcpp =
Mpost exp M pre.exp( ) M post.ctrl M pre.ctrl( )

Spre

Where S
pre

 refers to the pooled standard deviation of the two 
pre-test groups:

Spre = Spre.exp
2 + Spre.ctrl

2( ) / 2

Third, to obtain the PIC, we applied individual change indices 
to identify which individual score presented a reliable change. 
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Among the many reliable change indices available to evaluate 
the individual change in the pre-post designs, we chose two 
with excellent performance according to previous studies (Pardo 
& Ferrer, 2013; Ferrer & Pardo, 2014). First, the standardized 
individual difference (SID), i.e., the standardized score resulting 
from dividing each pre-post difference (D

i
) by the standard 

deviation of the differences (S
dif

):

SID =
Di

Sdif

This statistic was initially proposed by Payne and Jones (1957) 
to evaluate the abnormality of the discrepancy between two scores. 
If the distribution of the pre-post differences is normal, 95% of 
the SID are expected to be between ±1.96, and that 90% between 
±1.645. 

The second index is the reliable change index (RCI) proposed 
by Jacobson and collaborators (Jacobson & Truax, 1991). This is, 
probably, the best-known individual change index. It is based on 
the standard error of measurement. We applied a corrected version 
allowing for pre- and post- homoskedasticity (Cecchini, González, 
Llamedo, Sánchez, & Rodríguez, 2019; Christensen & Mendoza, 
1986; Maassen, 2004):

RCI =
Di

Spre 1 Rpre post( )
2
+ Spost 1 Rpre post( )

2

Ferrer and Pardo (2014) showed that the best false positive 
rate is obtained when the reliability is estimated with the pre-post 
correlation (R

pre-post
). 

After applying SID and RCI to each case in each simulated 
sample, we declared an individual change to be reliable when its 
SID or RCI value was greater than 1.645 (one-sided test) or 1.96 
(two-sided test). The post-test mean was expected to be higher than 
the pre-test mean. Therefore, we adopted a cutoff corresponding 
to a one-sided right test in the distribution of changes (post-test 
minus pre-test).

In the single group design, we computed the percentage of 
reliable improvements for each sample (Percentage of cases with 
SID or RCI > 1.645. Two-sided tests used when ES=0). In the control-
pre-post designs, we calculated in both groups the percentage 
of improvements or P+ (the percentage of cases with signifi cant 
“pre<post” differences) and the percentage of worsenings or P– (the 
percentage of cases with signifi cant “pre>post” differences), and 
subtracted these to obtain the net percentage of positive changes:

P
net

 = (P+
exp

 – P–
exp

) – (P+
ctrl

 – P–
ctrl

).

Finally, with every ES and PIC (200 pairs of values for each 
simulated condition), we obtained scatterplots to explore the 
underlying association, and fi tted different functions (linear, 
quadratic, cubic; SPSS curvefi t procedure) to specify the degree to 
which the change in ES helps predicting the PIC. 

Results

Given the space limitations, only the most relevant results are 
reported here. Specifi cally, we report the results based on the SID 
statistic for some representative conditions. The individual-based 
statistics based on RCI yielded very similar results: the correlation 
between PIC based on SID and based on RCI was .96. The mean 
difference between them was 0.06, median = 0). Results from the rest 
of conditions and results based on RCI are available upon request.

Figure 1. Single group pre-post design. Relation between group effect size (horizontal axis) and percentage of individual changes (vertical axis). Top panel: 
n=50, R

XY
=0.50, normal distribution. Bottom panel: n=50, R

XY
=0.50, extreme negative skewness
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Single group pre-post design

We created scatterplots representing the correlation between 
the ES (Cohen’s d) and the PIC (computed as the signifi cant SID 
values). Figure 1 shows some of these scatterplots for n=50 and 
R

XY
=0.50 (the same trends were observed with n=20 and n=100: 

greater dispersion with n=20, and smaller dispersion with n=100; 
different R

XY
 values led to almost identical results). The top panel 

in Figure 1 depicts one of the scenarios with stronger association 
(normal distribution); the bottom panel depicts one of the scenarios 
with weaker association (distributions with greater degree of 
non-normality). In each scatterplot, each point represents one 

replication. These replications come from the thirteen effect sizes 
within a given simulated condition (effects of 13 different sizes 
and 200 samples per simulated condition: 2,600 points per plot). 

To quantify the strength of the underlying association, we fi tted 
linear, quadratic, and cubic functions. In all of them, ES (Cohen’s 
d statistic) was used as the independent variable and the PIC 
(calculated from the SID statistic) as the dependent variable. Table 
1 reports the coeffi cient of determination (R2) from these functions 
in some representative simulated conditions. These results indicate 
that all three functions achieved a very good fi t. Although fi t was 
slightly better for more complex functions, the R2 values obtained 
with the linear function are quite similar to those obtained with the 
others. Different R

XY
 values led to almost identical results. They are 

available upon request.

Tables 2, 3 and 4 offer a summary of the results obtained 
(minimum, medium and maximum R2 values) segmented by 
sample size (Table 2), degree of pre-post correlation (Table 3) 
and degree of post-test vs. pre-test variability (Table 4). First, 
these results indicate that fi t generally improves as the sample size 
increases; however, this increase is quite small: between n=20 
and n=100, the mean R2 value increases in .04 points for linear 
and cubic functions, and .03 points for quadratic functions (see 
Table 2). Second, R2 does not appear to be altered by the pre-post 
correlation (see Table 3). Third, and key to the present study, R2 is 
not markedly altered when the post-test variability changes (see 
Table 4).

Table 1
Single group pre-post design. Fit of the linear, quadratic and cubic functions, for different distribution shapes, sample sizes, and change in standard deviation from pre- to 

post-test. Predictor: Cohen’s d; dependent variable: % of changes based on SID. R
XY

=0.50

n=20 n=50 n=100

Sd
post

/Sd
pre

Sd
post

/Sd
pre

Sd
post

/Sd
pre

Shape Function 0.25 0.5 1 2 4 0.25 0.5 1 2 4 0.25 0.5 1 2 4

Skew=-3 
Kurt=18

Linear 0.91 0.92 0.91 0.88 0.90 0.92 0.93 0.93 0.90 0.91 0.93 0.94 0.93 0.90 0.92

Quadratic 0.92 0.92 0.93 0.93 0.94 0.93 0.93 0.94 0.94 0.95 0.93 0.94 0.95 0.94 0.96

Cubic 0.96 0.96 0.96 0.94 0.95 0.97 0.98 0.97 0.96 0.97 0.98 0.98 0.98 0.97 0.98

Skew=-2 
Kurt=9

Linear 0.93 0.94 0.93 0.92 0.92 0.95 0.95 0.95 0.93 0.94 0.95 0.96 0.95 0.94 0.94

Quadratic 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.97 0.96 0.96 0.97 0.97 0.97

Cubic 0.97 0.97 0.97 0.96 0.97 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.98 0.99

Skew=-1 
Kurt=2

Linear 0.95 0.95 0.94 0.94 0.94 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.96

Quadratic 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98

Cubic 0.97 0.97 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Skew=0 
Kurt=0

Linear 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98

Quadratic 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98

Cubic 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99

Skew=1
Kurt=2

Linear 0.94 0.95 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97

Quadratic 0.96 0.96 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.97 0.97

Cubic 0.97 0.97 0.98 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Skew=2
Kurt=9

Linear 0.92 0.93 0.94 0.93 0.94 0.94 0.95 0.95 0.95 0.95 0.94 0.95 0.96 0.95 0.96

Quadratic 0.95 0.94 0.94 0.93 0.94 0.96 0.96 0.95 0.95 0.95 0.97 0.96 0.96 0.95 0.96

Cubic 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99

Skew=3
Kurt=18

Linear 0.89 0.91 0.92 0.90 0.91 0.91 0.92 0.93 0.92 0.93 0.91 0.93 0.94 0.92 0.93

Quadratic 0.93 0.93 0.92 0.91 0.92 0.95 0.94 0.93 0.92 0.93 0.95 0.95 0.94 0.92 0.94

Cubic 0.95 0.96 0.96 0.95 0.96 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.98 0.97 0.98

Table 2
Single group pre-post design. R2 values for each function and sample size

Function Min R2 Max R2 Mean R2

n=20

Linear 0.88 0.96 0.93

Quadratic 0.90 0.97 0.95

Cubic 0.90 0.98 0.95

n=50
Linear 0.91 0.96 0.95

Quadratic 0.92 0.98 0.96

Cubic 0.92 0.98 0.96

n=100

Linear 0.94 0.98 0.97

Quadratic 0.96 0.99 0.98

Cubic 0.97 0.99 0.99
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With the quadratic function, the R2 values range between 0.91 
and 0.99. With the cubic function, they range between 0.92 and 
0.99. Though both functions generally offer a slightly better fi t than 
the linear function, the difference between them makes us think 
that the linear function is adequate to represent the underlying 
association: the R2 values obtained with the linear function were 
always above 0.89 (found only with n=20 and extreme skewness).
In most conditions, they range between 0.90 and 0.98. 

Furthermore, the three functions yield very similar predictions. 
Table 5 contains the regression coeffi cients obtained for each of 
them, averaged for conditions. Using these average values, an ES 
of, for example, d=1, leads to a predicted PIC of 30% (linear and 
quadratic functions), and 25% (cubic). Though the estimated value 
for theses coeffi cients varies slight depending on the simulated 
condition, the variability is very small: across all conditions, the 
lowest and highest predictions are 27.2% and 31.9%, respectively. 
The coeffi cients in Table 5 allow computing a point estimate for 

any given ES, aggregated for all conditions. Additionally, we 
created supplemental tables with the PIC values (based on SID and 
RCI) for every condition in our study. They include the average 
PIC and the empirical quantiles 5 and 95 in our simulated samples. 
This information can be directly interpreted as the point estimate 
and 90% confi dence interval for a range of ESs in every condition. 
The supplemental tables are available online at https://github.com/
EduardoEstradaRs/Psicothema2020-GroupIndivChangeHeterosk

Focusing on the linear functions, the values for B
0
 range 

between 0 and 3; and the values for B
1
 between 28 and 32. These 

values imply that: (a) in the presence of a null effect, the estimated 
PIC ranges between 0 and 3%, with an average value of 0%; and 
(b) for each additional point in ES, the estimated PIC increases 
by 30 points, with minimum and maximum values of 28% and 
32% (note that the predictions below zero or above 100 must be 
replaced with their respective limits). 

Control group pre-post design 

Figure 2 shows several scatterplots representing the correlation 
between ES (quantifi ed using the omega-squared statistic) and PIC 
(calculated as the P

net
 statistic). These plots represent the conditions 

with n=50 and R
XY

=0.50 (very similar trends are observed with 
n=20 and n=100, though with greater dispersion with n=20 and less 
dispersion with n=100. No noteworthy differences were found with 
other R

XY
 values). The top and bottom panels in Figure 2 depict, 

respectively, one condition with a strong association (normal 
distribution), and another with a weak association (large departure 
from normality). Every point in Figure 2 represents one of the 
simulated samples (effects of 13 different sizes and 200 samples per 
simulated condition: 2,600 points per plot), but now each sample, 
i.e., each point, represents one experimental and one control group. 

To capture underlying association in the scatterplots in Figure 2, 
we fi tted linear, quadratic and cubic functions. The omega-squared 
statistic was the independent variable and the net PIC was the 
dependent variable. Table 6 shows the coeffi cient of determination 
(R2) obtained with these functions in each simulated condition. These 
results indicate that the three functions yielded a good fi t. Again, the 
fi t is slightly better for more complex functions. Different R

XY
 values 

led to almost identical results. They are available upon request.
Tables 7, 8 and 9 offer a summary of the results for the control 

group pre-post design (minimum, maximum and average R2 
values) segmented by sample size (Table 7), pre-post correlation 
(Table 8) and post-test vs. pre-test variability change (Table 9). 
First, these results indicate that the fi t improves when the sample 
size increases. This increase is slightly greater than for the single 
group design: between n=20 and n=100, the average R2 value 
increases .08 points for the linear and quadratic functions, and .02 
points for the cubic function (see Table 7). Second, R2 appear to 
be unaffected by the pre-post correlation (Table 8). Third, and key 

Table 3
Single group pre-post design. R2 values for each function and pre-post 

correlation (R
XY

)

RXY Function Min R2 Max R2 Mean R2

0.30

Linear 0.91 0.98 0.94

Quadratic 0.92 0.98 0.95

Cubic 0.95 0.99 0.98

0.50
Linear 0.90 0.98 0.94

Quadratic 0.92 0.98 0.95

Cubic 0.95 0.99 0.98

0.70
Linear 0.91 0.98 0.95

Quadratic 0.93 0.98 0.96

Cubic 0.95 0.99 0.98

0.90

Linear 0.91 0.98 0.94

Quadratic 0.93 0.98 0.96

Cubic 0.96 0.99 0.98

Table 4
Single group pre-post design. R2 values for each function and change in standard 

deviation from pre- to post-test

Sdpost/Sdpre Function Min R2 Max R2 Mean R2

0.25
Linear 0.88 0.98 0.94

Quadratic 0.92 0.98 0.95

Cubic 0.94 1.00 0.98

0.50
Linear 0.88 0.98 0.95

Quadratic 0.93 0.98 0.96

Cubic 0.94 1.00 0.98

1.00
Linear 0.89 0.98 0.95

Quadratic 0.91 0.98 0.96

Cubic 0.95 1.00 0.98

2.00
Linear 0.89 0.98 0.94

Quadratic 0.92 0.98 0.96

Cubic 0.95 1.00 0.98

4.00
Linear 0.89 0.98 0.94

Quadratic 0.92 0.98 0.96

Cubic 0.95 1.00 0.98

Table 5
Single group pre-post design. Regression coeffi cients (standard errors) for linear, 

quadratic and cubic functions

B0 B1 B2 B3

Linear 0.00  (0.02) 0.30  (0.01)

Quadratic -0.04  (0.04) 0.36  (0.09) -0.02  (0.03)

Cubic 0.03  (0.04) 0.05  (0.14) 0.21  (0.07) -0.04  (0.01)
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Figure 2. Control group pre-post design. Relation between group effect size (horizontal axis) and percentage of individual changes (vertical axis). Top panel: 
n=50, R

XY
=0.50, normal distribution. Bottom panel: n=50, R

XY
=0.50, extreme negative skewness

Table 6
Control group pre-post design. Fit of the linear, quadratic and cubic functions, for different distribution shapes, sample sizes, and change in standard deviation from pre- to 

post-test. Predictor: Omega-squared; dependent variable: net % of changes based on SID. R
XY

=0.50

n=20 n=50 n=100

Sdpost/Sdpre Sdpost/Sdpre Sdpost/Sdpre

Shape Function 0.25 0.5 1 2 4 0.25 0.5 1 2 4 0.25 0.5 1 2 4

Skew=-3 
Kurt=18

Linear 0.79 0.78 0.81 0.86 0.92 0.87 0.88 0.89 0.92 0.95 0.91 0.92 0.92 0.93 0.96

Quadratic 0.79 0.81 0.86 0.90 0.92 0.89 0.90 0.95 0.96 0.98 0.92 0.94 0.97 0.98 0.98

Cubic 0.81 0.82 0.87 0.90 0.93 0.90 0.91 0.95 0.96 0.98 0.94 0.95 0.97 0.98 0.99

Skew=-2 
Kurt=9

Linear 0.83 0.83 0.84 0.90 0.93 0.91 0.91 0.92 0.95 0.97 0.95 0.95 0.94 0.96 0.98

Quadratic 0.83 0.84 0.88 0.92 0.93 0.92 0.93 0.96 0.98 0.98 0.95 0.96 0.98 0.99 0.99

Cubic 0.85 0.86 0.89 0.93 0.94 0.93 0.94 0.96 0.98 0.98 0.97 0.97 0.98 0.99 0.99

Skew=-1 
Kurt=2

Linear 0.86 0.86 0.87 0.91 0.93 0.94 0.93 0.94 0.96 0.97 0.96 0.96 0.96 0.97 0.98

Quadratic 0.87 0.87 0.90 0.93 0.93 0.95 0.95 0.97 0.98 0.98 0.97 0.97 0.98 0.99 0.99

Cubic 0.88 0.88 0.90 0.93 0.93 0.95 0.95 0.97 0.98 0.98 0.97 0.98 0.98 0.99 0.99

Skew=0 
Kurt=0

Linear 0.88 0.87 0.90 0.93 0.94 0.94 0.94 0.95 0.97 0.97 0.96 0.96 0.97 0.99 0.99

Quadratic 0.90 0.89 0.91 0.93 0.93 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99

Cubic 0.90 0.90 0.91 0.94 0.94 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99

Skew=1
Kurt=2

Linear 0.84 0.85 0.89 0.93 0.93 0.91 0.92 0.95 0.97 0.96 0.94 0.94 0.97 0.98 0.98

Quadratic 0.89 0.89 0.89 0.91 0.92 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98

Cubic 0.89 0.90 0.90 0.93 0.94 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.99

Skew=2
Kurt=9

Linear 0.81 0.80 0.85 0.90 0.92 0.87 0.89 0.92 0.95 0.95 0.90 0.92 0.95 0.96 0.96

Quadratic 0.87 0.86 0.86 0.88 0.91 0.94 0.94 0.93 0.95 0.97 0.97 0.97 0.96 0.97 0.98

Cubic 0.87 0.86 0.87 0.91 0.94 0.94 0.94 0.94 0.96 0.97 0.97 0.97 0.97 0.98 0.98

Skew=3
Kurt=18

Linear 0.74 0.75 0.81 0.87 0.90 0.82 0.84 0.89 0.91 0.93 0.86 0.89 0.92 0.93 0.93

Quadratic 0.83 0.82 0.82 0.85 0.89 0.92 0.91 0.90 0.92 0.95 0.95 0.95 0.93 0.94 0.96

Cubic 0.83 0.82 0.83 0.88 0.93 0.92 0.91 0.91 0.94 0.96 0.95 0.95 0.94 0.96 0.97
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for the present study R2 did not change notably when the post-test 
variability changed (Table 9). When the standard deviation of the 
post-test is double or quadruple that of the pre-test, R2 is altered 
only slightly: the average R2 values with the linear function ranged 
between 0.90 and 0.95.

With the quadratic function, R2 ranged between 0.78 and 
0.99. With the cubic function, R2 ranged between 0.79 and 0.99. 
Although both functions generally offered slightly better fi t than 
the linear function, we consider the linear function a better choice 
to represent the underlying association, given its parsimony and 
the small difference between the R2 values: In the least favorable 
conditions (n=20 and extreme skewness), the lowest R2 value for 
the linear function was 0.72. Only 13 of the 420 linear functions 
(3.1%) yielded R2 values below 0.80, always with small samples 
(n=20). In the rest of the simulated conditions, R2 was never below 
0.80. It ranged between 0.80 and 0.90 in 20.5% of the conditions, 
and above 0.90 in 76.4% of the conditions (reaching R2=0.99 in 
some of them).

Table 10 reports the averaged regression coeffi cients of the 
functions. These coeffi cients can be used to estimate the net PIC 
based on the values of the omega-squared statistic. The coeffi cients 
for the linear function indicate that: (a) with a null effect (omega-
squared=0), the estimated PIC ranges between 0 and 16.4%, with 
an average value of 6.64%; and (b) for each 0.10 points of increase 
in omega-squared, the estimated PIC increases by 14.7 points, 

with minimum and maximum values of 12.7% and 16.5% (the 
predictions below zero or above 100 must be replaced with their 
respective limits). For the specifi c estimates in every condition, see 
the supplementary tables in https://github.com/EduardoEstradaRs/
Psicothema2020-GroupIndivChangeHeterosk

Discussion

The fi rst objective of the present study was to extend the results 
in Estrada et al. (2019) to scenarios with a change of variability 
between pre- and post-test time points. In other words, we sought 
to verify whether the change in the center of the distribution 
(average based effect size, ES) is associated with the percentage of 
individual changes (recovery percentage PIC) when the variability 
change across time points. The scatterplots of Figures 1 and 2 
show that ES increases are monotonically associated with the PIC, 
regardless of the shape of the underlying association and the pre-
post change in variability. Therefore, the results reported by Estrada 
et al. (2019) are replicated and extended here, under this broad 
set of new scenarios: even when a compensation or magnifi cation 
effect exists –and therefore the distribution has lower or greater 
variability in the post-test time point– the association between 
average and individual based change statistics is very strong, and 
increases monotonically.

Table 7
Control group pre-post design. R2 values for each function and sample size

Function Min R2 Max R2 Mean R2

n=20
Linear 0.77 0.94 0.87

Quadratic 0.78 0.94 0.89

Cubic 0.86 0.98 0.95

n=50
Linear 0.79 0.98 0.93

Quadratic 0.86 0.98 0.95

Cubic 0.87 0.98 0.96

n=100

Linear 0.84 0.99 0.95

Quadratic 0.90 0.99 0.97

Cubic 0.92 0.99 0.97

Table 8
Control group pre-post design. R2 values for each function and pre-post 

correlation (R
XY

)

RXY Function Min R2 Max R2 Mean R2

0.30
Linear 0.77 0.99 0.91

Quadratic 0.78 0.99 0.93

Cubic 0.79 0.99 0.94

0.50
Linear 0.74 0.99 0.91

Quadratic 0.79 0.99 0.93

Cubic 0.81 0.99 0.94

0.70
Linear 0.76 0.99 0.92

Quadratic 0.80 0.99 0.94

Cubic 0.81 0.99 0.94

0.90

Linear 0.76 0.99 0.93

Quadratic 0.78 0.99 0.94

Cubic 0.79 0.99 0.95

Table 9
Control group pre-post design. R2 values for each function for different values of 

post-test standard deviation

Sdpost/Sdpre Function Min R2 Max R2 Mean R2

0.25
Linear 0.77 0.99 0.90

Quadratic 0.78 0.99 0.92

Cubic 0.79 0.99 0.93

0.50
Linear 0.75 0.98 0.90

Quadratic 0.81 0.99 0.92

Cubic 0.82 0.99 0.93

1.00
Linear 0.76 0.97 0.90

Quadratic 0.78 0.98 0.93

Cubic 0.79 0.98 0.93

2.00
Linear 0.86 0.99 0.94

Quadratic 0.85 0.99 0.95

Cubic 0.88 0.99 0.96

4.00

Linear 0.88 0.99 0.95

Quadratic 0.87 0.99 0.96

Cubic 0.91 0.99 0.96

Table 10
Control group pre-post design. Regression coeffi cients (and standard errors) for 

linear, quadratic and cubic functions

B0 B1 B2 B3

Linear 6.64  (5.23)
147.30  
(10.38)

Quadratic 1.76  (4.32)
213.44  
(74.26)

-107.73  
(105.65)

Cubic 2.13  (5.26)
203.16  

(117.41)
-74.00  

(290.14)
-2.59  

(197.76)
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Our second objective was to fi nd the function that could 
represent the existing association between ES and PIC. We found 
that the linear, quadratic and cubic functions all offer excellent fi t. 
However, we hold that the linear function is the best choice: it offers 
an excellent fi t, while being the most parsimonious, and thereby 
preferable from an applied perspective (Bentler & Mooijaart, 
1989; Steele & Douglas, 2006). Again, this result replicates the 
fi ndings in Estrada et al. (2019), and extends them to scenarios 
with a change of variance. Note that, because the dependent 
variables in our regression models are percentages, a function with 
asymptotical values (e.g., logistic) would be suitable. However, we 
decided to apply only polynomials of degree 1, 2 and 3 because a) 
they are simpler to interpret for applied practitioners, and b) the 
achieved excellent fi t in every condition.

Another relevant fi nding is that the slope of the regression line 
is approximately the same in all of the simulated conditions. In the 
single group pre-post designs, we found an average value of 0.30 
(ranging between 0.28 and 0.32). This means that, for each point of 
increase in ES (Cohen’s d), the linear function estimates an increase 
of 30 points in PIC (i.e., an increase of .10 in d is associated with 
an increase of 3 points in PIC). In the control-pre-post design, the 
R2 values indicate that the linear function is also the best choice 
to represent the underlying association. Based on the average 
regression coeffi cients, for each .10 additional points of omega-
squared, the estimated PIC increases approximately 15 points.

Tables 5 and 10 provide regression coeffi cients allowing a general 
point estimation of the expected PIC given an ES value. The specifi c 
PIC expected for every condition and ES (based on the average, 
quantile 5, and quantile 95, obtained in our simulation) are available 
online at https://github.com/EduardoEstradaRs/Psicothema2020-
GroupIndivChangeHeterosk. Researchers interested in computing 
the expected PIC for any specifi c set of conditions can consult these 
tables to make their estimate.

Our third objective was to determine under which conditions the 
association is found. It was verifi ed in all the simulated conditions. 
However, the degree of fi t of the linear function is not identical in 
all them: in the most favorable conditions (normality and similar 
variances in the pre- and post-test distributions), R2 reached values 
close to 0.99; in the least favorable conditions (extreme skewness), 
R2 dropped to 0.88 in the single group pre-post designs and to 
0.74 in the control-pre-post design. However, this happened with 
n=20. The fi t improved considerably with larger samples: with 
n=100, in the single group pre-post designs, R2 reached 0.99 in the 
most favorable conditions and did not fall below 0.94 in the least 
unfavorable ones. In the control-pre-post designs, R2 reached 0.99 
and did not fall below 0.84.

Implications of our fi ndings

In the clinical setting, it is increasingly common that 
professionals evaluate the effectiveness of their treatments by 
computing a recovery percentage (e.g., Ogles et al., 2001). Our 
results indicate that, when this percentage is unknown, a good 
estimate can be obtained based on the averaged based effect size, 
which is usually known and reported in previous studies.

Let us illustrate this idea with an example. Macías et al. (2019) 
applied an intervention for improving several psycho-social 

variables in public workers. They compared the pre- and post-
test scores of 19 cases receiving the intervention and 19 control 
cases. According to their Table 2, the treated group experienced a 
signifi cantly greater improvement in the Mental Health scale, F

AB
 

= 45.7, p < .01. Based on this information, we can compute ω̂2 
= 1 (45.7 – 1) / (1 (45.7 – 1) + 19) = .37. Now we can use the 
linear coeffi cients in our Table 10 to compute the net percentage 
of changes as PIC = 6.64 + 147.3*.37 = 61.19%. This is the net 
percentage of individual improvements in the treated group.

Our results have a number of methodological implications for 
the understanding and interpretation of ES measures. For example, 
meta-analytic studies could include individual based estimations of 
effect sizes to allow an easier interpretation of the effectiveness of 
clinical interventions (especially for applied researchers). Future 
research should examine the sampling distribution and standard 
errors of the individual based statistics.

In many contexts, it is common to use cutoffs to interpret their 
magnitude. The best-known and used are those proposed by Cohen 
(1992) for the typifi ed difference d (in single group pre-post designs, 
0.20, 0.50 and 0.80 for small, medium and large effect sizes, 
respectively). These cutoffs were based on the degree of overlap 
between two normal distributions as the mean difference is changed. 
Applying these cutoffs to the data simulated in our study leads to 
9%, 15% and 24% of individual changes. In the context of a control 
group pre-post design, similar cutoffs have been proposed for the 
omega-squared statistic: 0.01, 0.06 and 0.15 for small, medium and 
large effect sizes, respectively (Kirk, 2013). Applying these cutoffs 
to the data in our study leads to 8.1%, 15.5% and 27.3% of changes. 
The estimated PIC is quite similar in both designs: a large ES is 
associated with approximately 25% of changes. In our view, it is 
unreasonable to declare that an intervention leading to a reliable 
change in one out of four patients had a “large effect”. Therefore, it 
appears that the cutoffs habitually used to evaluate effect sizes are, 
in addition to arbitrary, hardly informative (for further details and 
examples, see Estrada et al., 2019). 

Final remarks

The present study extends the current knowledge about the 
association between average and individual change statistics. 
Based on our results, we can generalize the strong association 
patterns found in previous reports to an even broader set of pre-
post scenarios. Specifi cally, we found that a linear function can be 
assumed in the presence of changes of variance between the pre- 
and post- time points. This fi nding is extremely important, because 
changes in variance are expected (and often found) in pre-post 
studies. Particularly, clinical and cognitive interventions –among 
many others– often lead to individual differences in change that are 
associated with the baseline level of the participants. Our fi ndings 
provide evidence for the idea that the average and individual based 
statistics are strongly associated also in these frequent empirical 
scenarios.
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