EFECTOS DEL RUIDO SOBRE MEMORIA Y
ATENCION: UNA REVISION

Carmen SANTISTEBAN REQUENA
Zuleyma SANTALLA PEÑALOZA
Departamento de Metodología de las Ciencias del Comportamiento
Facultad de Psicología
Universidad Complutense de Madrid

RESUMEN

En esta revisión se han intentado recoger los trabajos más relevantes publicados en los últimos 30 años, y que han tratado de evidenciar los posibles efectos que el ruido produce sobre la atención y la memoria, poniéndose en relación las condiciones experimentales de sonido, la activación general del sujeto, y la dominancia de los elementos incluidos en la tarea, a lo largo del proceso de experimentación. Para el tratamiento de los temas, se ha realizado una división en apartados en concordancia con los aspectos más relevantes de cada uno de los estudios considerados y de su relación con otros trabajos. Estos apartados no son excluyentes en sus contenidos ya que, la propia naturaleza de los temas tratados hace que estos estén entremezclados. En las relaciones entre Ruido y Memoria se han considerado teorías y resultados relativos a experimentos en recuerdo libre a corto plazo, en recuerdo a corto plazo de la posición y de la secuencia, del agrupamiento en categorías y, colateralmente, los efectos sobre tareas no memorísticas de identificación o reconocimiento. Bajo el título de Ruido y Atención se incluyen dos grupos de investigaciones, las que estudian los efectos del ruido sobre el proceso atencional a través de las inferencias realizadas en relación con procesos de memorización y recuperación de información, y aquellos trabajos en los que la atención se evalúa a través de resultados observados en pruebas visuales. En otro apartado se someten a consideración ciertas variables, no mencionadas explícitamente en los apartados anteriores, y que tienen relación con los efectos del ruido sobre la atención. Por último, se dedica un amplio apartado a la exposición de los factores que consideramos fundamentales e intervienen en las distintas investigaciones, así como un análisis de los resultados y conclusiones al respecto.

ABSTRACT

Memory and attention: A review.- In this revision we have tried to include the most relevant studies that, over the past 30 years try to make clear the possible effects of noise on attention and memory. The studies relate the experimental conditions of noise, the subjects' general activation, and the dominance of the task-elements, during the whole experimental
process. For the each theme, we have organized the material by dividing it into sections, according to the most relevant aspects of each of the studies under consideration and also its relation to the other studies. These sections are not mutually exclusive, because, due to the nature of our subject matter, they intermix. Under "The Relationship between Noise and Memory" we have considered theories and outcomes of experiments on free short-term recall, short-term recall of position and sequence, of grouping in categories and, collaterally, the effects on non-memoristic tasks of identification or recognition. Under "Noise and Attention" we include two groups of investigations: those studying the effects of noise on the attention-process by inferences drawn in relation to memorization and information-recuperation process, and those which assess attention by observed results in visual tests. There is a section which considers variables not included in prior sections, but related to the effects of noise on attention. Lastly, a large section is devoted to expose the main factors involved in the researches and our analysis and conclusion to respect them.

1. INTRODUCCION

En esta revisión se ha intentado recoger los trabajos más relevantes publicados en los últimos 30 años que tratan de evidenciar los posibles efectos que el ruido produzce sobre la atención y la memoria, poniéndose en relación las condiciones experimentales del sonido, la activación general del sujeto y la dominancia de los elementos incluidos en la tarea a lo largo del proceso de experimentación.

Para el tratamiento de los temas se ha realizado una división en apartados en concordancia con los aspectos más relevantes de cada uno de los estudios considerados y su relación con otros trabajos; sin embargo, esta división no ha producido secciones excluyentes en cuanto a sus contenidos, porque los temas de recuerdo y atención se encuentran entremezclados por su propia interrelación, tanto desde el punto de vista teórico como del diseño y ejecución de experimentos que implican a los procesos. La superposición de los temas permite el que, adoptando otros criterios de clasificación, se pudiese dar otro etiquetado para los temas, incluir otros trabajos y hacer asignaciones en apartados distintos.

En "Ruido y Memoria", se han considerado sus relaciones en apartados que inciden sobre los resultados de los experimentos en recuerdo libre a corto plazo, sobre el recuerdo a corto plazo de la posición y de la secuencia, sobre los efectos en el agrupamiento por categorías y, colateralmente, sobre las diferencias mostradas por los sujetos cuando realizan tareas de recuerdo, o bien tareas no memorísticas de identificación o de reconocimiento.

Bajo el título de "Ruido y Atención" se incluyen, de una parte, el grupo de investigaciones en las que se estudian los efectos del ruido sobre el proceso atencional, a través de las inferencias realizadas a partir de los cambios en la eficiencia en tareas que, directamente, hacen referencia al proceso de memorización y recuperación de información; de otra parte, se considera el grupo de trabajos en los que la atención se evalúa a través de resultados observados en pruebas visuales. Por lo tanto, en la primera parte de este apartado, bajo el título de "Atención inferida a partir de los cambios en la eficiencia en tareas que evalúan el recuerdo a corto plazo", se hace referencia a trabajos que bien podrían haber sido incluidos, o que de hecho también lo están, en alguno de los apartados anteriores sobre ruido y memoria. En cuanto a las pruebas visuales, se hace mención explícita de los tests de figuras enmascaradas, a los diseñados por Navon y Bakan respectivamente, al test de Stroop.

Por último, dedicamos en esta revisión...
un apartado a la consideración de ciertas variables, como son las relacionadas con distintas formas de presentación del ruido, de las que no se había hecho mención explícita en los apartados anteriores, y que tienen relación con los efectos observados del ruido sobre la atención.

2. RUIDO Y MEMORIA

2.1. Resultados experimentales en recuerdo libre a corto plazo

Los resultados, que experimentalmente han obtenido los distintos investigadores, en el área de los efectos del ruido sobre el rendimiento de los sujetos en tareas que implican procesos de memorización y recuperación de información, varían considerablemente unos de otros. Estas variaciones ponen de manifiesto que factores intrínsecos al paradigma experimental utilizado en cada caso, cumplen un papel determinante en los resultados obtenidos.

En 1969, Mc Clean, usando el paradigma del aprendizaje de pares asociados comparando la condición de ruido blanco, a un nivel de intensidad de 85 dB, con la de ausencia de ruido, observó que el ruido provoca un deterioro en el recuerdo a corto plazo. En contraposición, los resultados obtenidos por otros investigadores muestran un ligero efecto benéfico, o bien ausencia de efecto, del ruido blanco sobre el recuerdo.

Uno de los factores fundamentales que obviamente se tiene en consideración en este tipo de investigaciones es el nivel de intensidad del ruido utilizado. Así, Berlyne et al. (1965), obtuvieron resultados experimentales que indican una ligera mejoría en una tarea de recuerdo de pares asociados cuando se comparan los resultados bajo la condición de ruido a 58 dB de intensidad con la ausencia de ruido, pero que, sin embargo, los sujetos muestran un deterioro del rendimiento cuando el nivel de intensidad del ruido se aumenta a 75 dB. No obstante, Berlyne, Borsa, Hamacher y Koenig (1966) no observaron diferencias significativas en el recuerdo inmediato en la tarea de pares asociados al comparar la condición de ruido blanco, a nivel de intensidad de 75 dB, con la de ausencia de ruido. En concordancia con estos resultados, Haveman y Farley (1969) tampoco encontraron efectos diferenciales significativos del ruido blanco sobre el recuerdo inmediato, ni en el caso en el que usaban pares asociados, ni en el que la tarea empleada consistía en el recuerdo libre.

Los resultados publicados por Hockey y Hamilton (1970) coinciden con los de los autores anteriormente mencionados en el sentido de que estos autores observaron que no había diferencias significativas entre el porcentaje de ítems recordados bajo una condición de ruido blanco a 85 dB, y el recordado en otra a 55 dB de intensidad. Por el contrario, Hamilton, Hockey y Quinn (1972) observaron un efecto benéfico del ruido de 85 dBC de intensidad sobre la memoria de pares asociados. Así mismo, Smith (1985a) empleando listas de palabras asociadas, observó que el recuerdo medido como número de pares de palabras recordadas era mejor cuando los sujetos trabajaban bajo una condición de ruido que cuando lo hacían bajo la condición de silencio, independientemente de que fuese mayor o menor el grado de asociación entre palabras.

Este conjunto de investigaciones no permiten establecer una relación causal clara entre nivel de intensidad del ruido y grado de recuerdo posterior. Lo que sí parece quedado establecido es que, la propuesta inicial de Broadbent (1971) de que el ruido blanco solamente afecta al rendimiento en la tarea cuando este alcanza una intensidad superior a los 90 dB, no es del todo adecuada. En los resultados citados tampoco queda
claro si los efectos observados del ruido se deben a diferencias en las estrategias de recuperación, en el proceso de aprendizaje de dichas estrategias, o si bien es un efecto automático sobre los procesos involucrados en el almacenaje y recuperación de la información.

Una visión más amplia en cuanto a los efectos que ejerce el ruido sobre el recuerdo libre de información, se obtiene si se tienen en cuenta trabajos como los de Daee y Wilding, Poulton, Millar, etc.

En 1.977, Daee y Wilding, en un primer experimento, predijeron que el recuerdo total de ítems disminuiría en función del nivel de intensidad del ruido presentado. Para evaluar esta predicción emplearon una tarea de recuerdo libre de palabras. El número total de palabras presentadas fue 40, y las listas se caracterizaban porque en ellas 20 de las palabras no guardaban relación alguna ente sí, 10 eran nombres de animales y 10 de vegetales. Las palabras se presentaban en orden aleatorio, a una tasa de una palabra cada dos segundos.

Los resultados mostraron que, en general, el número medio de palabras recordadas por los sujetos se veía afectado significativamente por el nivel de intensidad del ruido blanco. Analizando detalladamente estos resultados, los autores observaron que comparando el rendimiento en tres condiciones de ruido, a saber: ausencia de ruido (silencio), ruido blanco con nivel de intensidad de 75 dBC y ruido blanco con nivel de intensidad de 85 dBC, solamente eran significativos los resultados en la comparación con intensidades de 75 dBC y 85 dBC. Esta comparación reflejó que, bajo la situación de ruido a 85 dBC, el número medio de palabras recordadas por los sujetos era menor que el alcanzado bajo la situación de ruido a 75 dBC; no observándose que el número de palabras recordadas fuese significativamente distinto cuando se comparaba la condición de silencio con la de ruido a un nivel de intensidad de 75 dBC.

En un segundo experimento, estos mismos autores intentaron replicar el experimento anterior controlando la dimensión de personalidad extroversión/introversión de los sujetos, debido a que, de acuerdo con Eysenck (1960), el ruido afectaría de una manera distinta a las personas que difiriesen en esta dimensión de personalidad. Se esperaba así que los incrementos en el nivel de intensidad del ruido facilitaran el desempeño de la tarea en las personas extrovertidas, caracterizadas por un bajo nivel de activación general, pero que, por encima de un cierto nivel de activación hubiese un deterioro.

Los resultados mostraron que, globalmente analizados, en promedio, aquellos sujetos calificados como extrovertidos recordaban un mayor número de palabras que aquellos otros que fueron clasificados como introvertidos. Esta superioridad en el nivel de recuerdo, observado en los extrovertidos, apoya la propuesta de que hay un mayor rendimiento del recuerdo a corto plazo, cuando el nivel de activación general es bajo. Los resultados de este experimento, no obstante, no permiten apoyar estadísticamente la hipótesis de que el ruido afecta diferencialmente a extrovertidos y a introvertidos, ya que, si bien hubo una tendencia a que bajo la condición de ruido blanco con 75dBC de intensidad los extrovertidos presentasen en promedio un mejor recuerdo que bajo la situación de ausencia de ruido, y que el rendimiento de los introvertidos declinara, la interacción entre condiciones de ruido y dimensión de personalidad no alcanzó el nivel de significación adecuado para apoyar estadísticamente dicha hipótesis.

Basándose en la propuesta de Poulton (1976), según la cual, el ruido dañaría los procesos de memoria a corto plazo debido a que este tipo de estimulación enmascara el resaño verbal interno, indispensable para mante-
ner la información en el almacén a corto plazo, provocando así que el material almacenado se pierda con mayor facilidad, Millar (1979) predijo que si el ruido enmascaraba el repaso, entonces, el rendimiento de los sujetos bajo condiciones de ruido sería inferior al alcanzado en silencio, pero que si este repaso era impedido, tanto en la condición de ruido como en la de silencio, no habría diferencias significativas entre ambas condiciones.

Este autor utilizó una tarea de recuerdo a corto plazo de consonantes presentadas visualmente, a una tasa de dos letras por segundo, con un total de ocho letras por lista. Con objeto de impedir el repaso, Millar (1979) empleó una tarea articulatoria en la que los sujetos debían contar rápidamente y en voz alta del uno al siete, al mismo tiempo que memorizaban las consonantes presentadas. El sonido utilizado por el autor como fuente generadora de ruido fue un sonido contínuo de banda ancha, que bien podría presentarse, con un nivel de intensidad de 92 dBA (ruido), o bien, con uno de 75 dBA (silencio).

Los resultados reflejaron que, cuando se utiliza como medida del recuerdo el recuerdo total correcto, la condición definida como ruido (92 dBA) interactúa con la sesión (el autor utiliza dos sesiones) y con el tiempo en la tarea (1a y 2a mitad de cada sesión). En la primera sesión, el recuerdo bajo la condición de silencio (75 dBA) mejora con el paso del tiempo, mientras que en la condición de ruido, el recuerdo permanece constante a lo largo de toda la sesión. Estos resultados son los obtenidos en la condición en la que el repaso verbal interno está permitido. En la segunda sesión, el recuerdo total correcto mejora con el paso del tiempo, en aquellos casos en que los sujetos trabajan bajo ruido, pero cuando lo hacen en silencio, el recuerdo muestra un deterioro a lo largo de la sesión. Esto ocurre, tanto en la condición en que se permite el repaso, como en la que está suprimido. Como era de esperar, el recuerdo total correcto en ambos grupos (silencio y ruido) mejora de la primera a la segunda sesión experimental, atribuyendo esta mejora al efecto de la práctica en la tarea, y el rendimiento es, en general, peor en la condición en que el repaso está suprimido que en la que está permitido.

Los resultados obtenidos en la primera sesión son consistentes con la hipótesis del enmascaramiento del repaso verbal. Como se había predicho, cuando el repaso está permitido el ruido provoca un decremento en el recuerdo total correcto, pero, cuando es impedido, tanto en silencio como con ruido, no hay diferencias significativas en el rendimiento alcanzado por los sujetos bajo estas dos condiciones de sonido. No obstante, los resultados de la segunda sesión experimental son opuestos a los de la primera. Millar (1979) consideró que esta discrepancia no necesariamente contradice la hipótesis del enmascaramiento, proponiendo que es razonable suponer que lo novedoso de la tarea desaparece en la segunda sesión y que, entonces, surge el aburrimiento y la fatiga, lo cual queda claramente reflejado en el descenso en las puntuaciones de recuerdo total correcto, observado en el grupo de sujetos que trabajaban en silencio. Adicionalmente, aún cuando el ruido enmascara el repaso verbal interno, sus propiedades activadoras podrían impedir los fallos en el rendimiento de los sujetos sometidos a la condición de ruido en esta segunda sesión.

Además de analizar las puntuaciones en recuerdo total correcto, Millar (1979) también estudió el número de errores por comisión. Usando esa medida observó que, en general, en la primera sesión, este tipo de errores aumenta con el paso del tiempo, tanto en la condición de ruido como en el de silencio, pero que, en la segunda sesión había una marcada diferencia entre los gru-
pos sometidos a ambas condiciones de sonido, observándose que, tanto en la situación, de repaso permitido como en la de supresión, los errores por comisión aumentan en la condición de silencio. Este resultado lo consideramos relevante porque permite explicar el deterioro observado en el recuerdo total del grupo que trabajaba en silencio en esta segunda sesión. El deterioro en el rendimiento se puede explicar exclusivamente por un aumento en el número de errores por comisión, y no a fallos en la generación de material a partir de la memoria. En contraste, la mejora observada con ruido, en esta segunda sesión, es consecuencia de una disminución del número de errores por comisión.

Estos resultados no permiten apoyar la hipótesis del enmascaramiento propuesta por Poulton, ya que, si el ruido enmascara el repaso verbal interno, este tipo de estimulación haría más difícil distinguir entre la representación acústica de un ítem de la de otro, lo cual, obviamente, repercutiría en un incremento en el número de errores por comisión. En este sentido, Smith (1985) realizó un experimento en el cual pidió a los sujetos que recordasen listas de palabras bajo una de las siguientes condiciones de ruido: ruido ambiente (aproximadamente 40 dB), ruido limitado en banda ancha de 0-4000 Hz de frecuencia con un nivel de intensidad de 80 dB y ruido limitado en banda ancha de 4000-8000 Hz de frecuencia con un nivel de intensidad de 80 dB. Los resultados pusieron de manifiesto que el ruido en el espectro del lenguaje (que el autor fija entre 0 y 4000 Hz) provoca un incremento significativo en el número de errores cometidos por los sujetos. Estos resultados son consistentes con la línea teórica según la cual los efectos del ruido son explicables en términos de que este tipo de estimulación interfiere con el repaso subvocal del material a ser recordado.

Como se puede inferir, parte de los resultados obtenidos por Millar (1979) son explicables desde el punto de vista de una influencia activadora del ruido, la cual traería como consecuencia que el nivel de "arousal" de los sujetos superara el óptimo necesario para la realización adecuada de una tarea dada, creándose así una sobreactivación que conllevaría a un descenso en el rendimiento. Sin embargo, también podría explicarse si centramos nuestra explicación en los efectos del ruido sobre la atención. De acuerdo con este punto de vista, el efecto del ruido sería el de focalizar la atención del sujeto hacia los aspectos dominantes o prioritarios de la tarea, en detrimento de los menos dominantes (Broadbent, 1971; Hockey, 1973).

Numerosas investigaciones en el campo de la memoria humana han puesto de manifiesto que, cuando las personas se enfrentan a tareas que implican el aprendizaje y posterior recuerdo de material verbal, se da una jerarquía de análisis que fluctúa desde un análisis inicial de las características físicas del estímulo, análisis superficial, hasta un análisis de las características semánticas, análisis profundo, (Craik y Lockhart, 1972). En las investigaciones se sugiere que la duración o persistencia de las huellas de la memoria está en función de la profundidad del análisis, de manera que las huellas más elaboradas y fuertes resultan de los niveles de análisis más profundos.

Tomando como base esta postura teórica, autores como Schwartz (1975) y Jones y Broadbent (1979) han planteado que, cuando las personas están en situaciones de trabajo caracterizadas por la presencia de ruido, hacen uso con mayor frecuencia de niveles de codificación relativamente superficiales y que, por ende, descuidan los niveles de procesamiento más profundos. Siguiendo esta línea teórica, Smith y Broadbent (1981), realizaron una serie de
EFECTOS DEL RUIDO SOBRE MEMORIA Y ATENCIÓN: UNA REVISIÓN

experimentos en los cuales estudiaban los efectos del ruido sobre el recuerdo a corto plazo que seguía a la realización de distintos tipos de codificación. Estos autores, en un primer experimento, predijeron que si el ruido realmente crea sesgos, en cuanto a que existe una clara tendencia a una mejor codificación en base a las características físicas, y no a las semánticas, era de esperar que se observase uno de los siguientes patrones de resultados:

a) Si el sesgo inducido por el sonido es aditivo con el producido por las instrucciones de clasificación, entonces, se esperaría un efecto negativo en relación con el rendimiento en la tarea.

b) Si el sesgo inducido por el sonido es invalidado por las instrucciones semánticas, pero no por las físicas, entonces, se esperaría bajo rendimiento para la condición de clasificación física.

c) Si el sesgo inducido por el sonido es invalidado por las instrucciones físicas, pero no por las semánticas, entonces, se esperaría un efecto negativo del sonido en la condición de clasificación semántica.

d) Los autores, así mismo, esperaban que el sonido interactuara con las palabras emocionales, de igual forma que interactúa con el nivel de activación general del sujeto, y que, dado que pueden ser vistas como más distintivas, se esperaba que el sonido interactuara con ellas de igual forma que lo hace con los aspectos prioritarios o dominantes de una tarea.

Los resultados experimentales mostraron que no había un efecto principal significativo del ruido sobre el recuerdo total, evidenciándose, sin embargo, un efecto principal significativo en relación con el orden de presentación de las condiciones de sonido. Se observó, que la presentación en el orden ruido-silencio producía en los sujetos un nivel de recuerdo mayor, siendo significativa la diferencia entre el número de palabras recordadas por estos sujetos que por aquellos que trabajaron bajo las condiciones sonoras en orden inverso. En relación al efecto del tipo de palabra, se observó que las palabras emocionales (placenteras y no placenteras) eran mejor recordadas que las neutras. Nuevamente, aquí no se encontró que el efecto principal del ruido fuese estadísticamente significativo.

Estos resultados no concuerdan con el punto de vista teórico, según el cual, el ruido crea sesgos hacia una codificación física, provocando disminuciones en el procesamiento semántico de la información verbal.

En el experimento mencionado, los autores solamente consideraron el efecto de las condiciones de sonido sobre el recuerdo, reconsiderando posteriormente la posibilidad de que el ruido influya en la velocidad con la que el sujeto codifica la información, e hipotetizan que, si el ruido produce sesgos en el proceso de codificación hacia las características físicas, entonces, habría una interacción entre ruido y tipo de emparejamiento. Para comprobar esta hipótesis usaron un paradigma experimental relacionado directamente con los niveles de procesamiento. Las tareas típicas de este paradigma son las de emparejamiento físico (AA) y la de emparejamiento semántico (Aa), en las que los sujetos deben indicar si las letras tienen o no el mismo nombre.

Se observó que, en relación al tiempo de reacción, había un efecto principal significativo del tipo de emparejamiento con una diferencia promedio de 80 mseg. entre el emparejamiento físico y el semántico, pero no había un efecto principal significativo del ruido. Analizando la tasa de errores observamos que tasa era menor en la condición de emparejamiento que en la de emparejamiento semántico, independientemente de que el sujeto se hallase bajo la condición

Psicotherapie, 1990

55
de ruido (85 dBC) o bajo la de silencio (55 dBC).

Esta ausencia de un efecto diferencial de las condiciones de sonido en las tareas de emparejamiento fue observada nuevamente en otro experimento realizado por estos mismos autores, en el que se reducía la ventaja del emparejamiento físico presentando las letras en forma sucesiva, y no simultánea como se había hecho en los anteriores experimentos.

Estos resultados dejan bastante claro el hecho de que el ruido no siempre induce a un procesamiento superficial de la información recibida en detrimento de niveles de análisis más profundos. Por lo que, no se puede aceptar irrevocablemente la explicación, según la cual, cuando se observan efectos dañinos del ruido en el recuerdo a corto plazo del material verbal, éstos se deben a que el sujeto procesa la información superficialmente.

En experimentos realizados por Smith, Jones y Broadbent (1981) se han evaluado los efectos de distintos niveles de intensidad de un ruido continuo de campo libre sobre el recuerdo de listas de palabras categorizadas, seleccionadas aleatoriamente de entre un amplio grupo de categorías verbales, la tarea de los sujetos era recordar y escribir el mayor número de palabras que pudiesen en el orden deseado, trabajando bajo condiciones de ruido continuo de campo libre a niveles de intensidad de 80 dBC (ruido) y de 55 dBC (silencio).

El análisis de los datos obtenidos en estos experimentos reflejó que el número promedio de palabras recordadas por los sujetos no se veía afectado de forma significativa por el nivel de intensidad del ruido presentado.

El efecto que sobre el recuerdo a corto plazo de listas de palabras categorizadas tiene la presencia o ausencia de ruidos (sonidos clasificados como agradables o desagradables por los sujetos), ha sido estudiado por Santalla y Santisteban (1989). En este estudio se comparó el número promedio de palabras recordadas correctamente por los sujetos y el número de errores por comisión en las siguientes de sonido:

a) Silencio: definida como aquella situación en la cual no se presentaba ningún sonido experimental, con nivel de intensidad en la cabina menor o igual a 60 dB.

b) Música clásica: definida como una situación sonora juzgada como placentera por el sujeto, con un nivel de intensidad de sonido en la cabina entre 70 y 80 dB.

c) Taladro eléctrico: definida como ruido, o situación sonora juzgada como displacentera, o desagradable, de acuerdo con la opinión de los sujetos, presentada con un nivel de intensidad entre 80 y 86 dB.

Los resultados de esta investigación mostraron que, ni el número promedio de palabras correctas recordadas, ni el número promedio de errores por comisión diferían significativamente al comparar estadísticamente las tres condiciones de sonido presentadas, aún cuando se evidenciaba una ligera tendencia a que el número promedio de palabras recordadas fuese mayor bajo la condición ambiental definida como de silencio, que bajo las otras dos condiciones.

El único efecto significativo, en cuanto a las diferentes condiciones de sonido, fue el relativo a la percepción subjetiva que los sujetos tenían sobre si cada una de las condiciones bajo las que trabajaban influían o no en su rendimiento. En este sentido, se observó que cuando los sujetos debían realizar la tarea de recuerdo bajo condiciones de ruido, fuese ésta placentera o desagradable, ellos opinaban que el estímulo sonoro tenía un efecto negativo sobre su rendimiento, siendo más negativo cuando el sonido era desagradable. Por el contrario, cuando traba-
jaban en silencio consideraban que su rendimiento había sido superior.

Las autoras concluyeron que, cuando las personas trabajaban bajo condiciones ambientales caracterizadas por la presencia de sonidos habituales durante un corto período de tiempo, la habituación hace que las condiciones sonoras no tengan un efecto significativo en el rendimiento en la tarea de recuerdo a corto plazo. No obstante, y dado que los sujetos manifiestan que estos sonidos les afectan negativamente, bajo estas condiciones sonoras, el sujeto sufre y debe pagar un coste psicológico para lograr adaptarse a ellas y mantener su nivel de rendimiento.

Resultados experimentales que evidencian un efecto negativo del ruido sobre el rendimiento en tareas de recuerdo los obtiene Eysenck (1975). Este efecto aparece en aquellos ítems que son ejemplos no dominantes de la categoría, no afectando en modo alguno a los ítems dominantes. Por otra parte, se observó que la latencia de respuesta de los sujetos con un alto nivel de activación general es menor que la de los sujetos con bajo nivel de activación. El nivel de activación general de los sujetos interactúa con la dominancia del ítem de manera tal que los sujetos con alta activación responden más rápidamente a los ítems dominantes.

En un intento de replicar estos resultados, Smith y Broadbent (1982) trabajaron con 24 ensayos de la tarea de recuerdo, donde en algunos de los ensayos los ejemplos eran dominantes y en otros eran no dominantes. Las condiciones de sonido comparadas fueron las de silencio, definida como la ausencia de sonido y la de ruido, consistente en ruido blanco con nivel de intensidad de 80 dB. Para el control del nivel de activación de los sujetos experimentales, se subdividió la muestra en dos grupos, en función de las puntuaciones obtenidas en la escala de activación “Thayer General”.

Los resultados mostraron que, por una parte, el porcentaje de errores cometidos por los sujetos era mayor para los ejemplos no dominantes de la categoría que para los dominantes. Por otra parte, en cuanto a la latencia de respuestas correctas, se observó que el nivel de actuación del sujeto no tenía un efecto significativo ni interactuaba con el ruido. Sin embargo, había un efecto principal significativo del ruido en el sentido de que las respuestas de los sujetos eran, generalmente, más rápidas en la condición de ruido que en la de silencio, considerándose que este efecto del ruido se debía al hecho de que este tipo de estimulación produce un estado en el sujeto, que los autores califican como despertamiento, que no necesariamente debe estar relacionado con la memoria. Por último, los resultados indicaron que la interacción entre ruido y dominancia de la palabra no era significativa.

Estos resultados difieren de los obtenidos por Eysenck (1975), las diferencias observadas se pueden explicar como consecuencia de variaciones en los procedimientos experimentales, tales como, el material experimental empleado, la hora del día en que se realiza la tarea, las diferencias en los tamaños muestrales, en el sexo, etc.

Con el fin de investigar hasta qué punto las características asociadas a la situación experimental influyen o no sobre los resultados obtenidos en el área de los efectos del ruido, Smith y Broadbent (1982) replicaron el experimento anterior, aumentando el número de ejemplos a recordar y el nivel de intensidad del sonido, siendo ahora de 85 dB, en condición de ruido y de 55 dB bajo la condición de silencio.

El resultado más relevante es el de la interacción significativa entre ruido y dominancia, observándose que el detrimento en el recuerdo bajo la condición de ruido se daba solamente con los ejemplos no dominantes. Este resultado concuerda con lo ha-
llado por Eysenck (1975). Se atribuye este efecto del ruido a un cambio automático en los parámetros del mecanismo de recuperación, si bien puede ser consecuencia de diferencias en las estrategias de recuperación utilizadas por los sujetos. Esta última alternativa fue propuesta por Smith y Broadbent (1982), basándose en que sus sujetos experimentales tenían experiencia previa con la tarea de producción de ejemplos de categorías, y esta experiencia puede inducir hacia una estrategia particular de recuperación de la información.

Para evaluar estas dos alternativas explicativas, Smith y Broadbent (1982) replicaron el experimento, manipulando la experiencia anterior que los sujetos poseían con la tarea de recuerdo. En este experimento, nuevamente, se observó el efecto principal significativo de la dominancia, pero, la interacción entre ruido y dominancia se debió, en este último caso, a que la disminución en el recuerdo bajo la condición de ruido se daba sólo con los ejemplos dominantes.

Es poco probable que las diferencias entre los resultados de estos experimentos sean consecuencia de diferencias en la inducción de ansiedad, ya que, aspectos tales como, las instrucciones, el experimentador y el ambiente de laboratorio eran idénticos en los dos experimentos. Así mismo, en ambos casos, los sujetos habían sido seleccionados de la misma población, asistían a las sesiones experimentales a la misma hora del día y el material estimular era idéntico. La única diferencia entre estos dos experimentos fue que unos sujetos poseían experiencia previa en la tarea, y otros no. O sea que, un grupo de sujetos comenzó el experimento con una jerarquía de estrategias de recuperación de información distinta a la del otro grupo. Por otra parte, el hecho de que el ruido aumentara el efecto de la dominancia en una clase de sujetos, pero no en otra, es una evidencia de que el ruido no provoca cambios pasivos y uniformes en los parámetros fundamentales del proceso de recuperación. Es más factible que su efecto se centre en las estrategias de recuperación usadas por las personas. El efecto del ruido sobre la selección de estrategias de recuperación, puede darse de dos formas distintas:

1.- Que el ruido reduzca la probabilidad de cambio de estrategia.

2.- Que la flexibilidad para cambiar de estrategia no se vea influenciada por el ruido.

Smith y Broadbent (1982) lo que proponen como alternativas es la dificultad en el cambio de estrategia, por un lado, y la flexibilidad de cambio permaneciendo en la estrategia más favorable un tiempo mayor; con lo que cualquier dificultad para cambiar de estrategia conllevaría a un deterioro en el rendimiento, pero, si lo que sucede es que la estrategia prioritaria se emplea durante más tiempo, entonces no se esperaría que se produjera este deterioro. Sin embargo, lo que muestran sus experimentos es que, bajo las condiciones de ruido, los efectos no se centran en una disminución en la flexibilidad para cambiar de estrategia, y que una posible mejora del rendimiento con ruido indica que las personas expuestas a él, cambian la prioridad de una estrategia por encima de la de otras. Cierta apoyo experimental a esta propuesta lo obtiene, posteriormente, uno de los autores Smith, (1985a) que, evaluando a los sujetos en condiciones en las que inicialmente se había presentado el ruido, aumentan sus niveles de recuerdo, y estos niveles se mantienen en el caso de que se pase a la condición de silencio. Estos resultados sugieren que el ruido refuerza el uso de una estrategia de recuperación dominante, y que cuando los sujetos trabajan con ruido continúan usando la estrategia empleada cuando varían las condiciones acústicas.

De entre las muchas variables que pue-
den incidir en los resultados experimentales obtenidos cuando se estudian los efectos del ruido sobre el rendimiento hay una particularmente importante para los estudios psicológicos, y que hasta ahora ha sido muy poco considerada. Nos referimos a esta variable como el nivel de sensibilidad individual al ruido. Una medida de la sensibilidad al ruido la de la escala de Bortner (Bortner, 1969; Defourny y Frankignoul, 1973). Uno de los estudios recientes que utiliza esta escala es el de Moch (1988), lo que le permite clasificar a los sujetos y explicar sus resultados, relativos al recuerdo de dígitos en condiciones de sonido y silencio, en función de la sensibilidad y los patrones conductuales de los sujetos.

2.2. Resultados experimentales sobre recuerdo a corto plazo de la posición y la secuencia

Dentro del área de investigación de los efectos del ruido sobre los procesos de memoria, no solo es factible medir el nivel de recuerdo de los individuos como recuerdo total correcto, sino que también se puede analizar la manera en que los sujetos recuerdan la información presentada, de forma tal que se obtengan datos referentes a si las personas recuerdan en el mismo orden en que los estímulos verbales han sido presentados o no.

En muchas de las investigaciones realizadas se ha observado que, si bien el nivel de intensidad del ruido no influye diferencialmente en el número total de ítems recordados por los sujetos, el número de ítems recordados en la posición correcta sí varía en función de este nivel de intensidad. En este sentido, Hockey y Hamilton (1970) observaron que el porcentaje de ítems recordados por los sujetos en la posición correcta es mayor en una condición de ruido blanco, con 85 dB de intensidad, que el porcentaje alcanzado bajo otra condición en la que el ruido se presentaba con un nivel de intensidad de 55 dB.

Hamilton, Hockey y Quinn (1972) indicaron que, los resultados experimentales por ellos obtenidos en relación al efecto benéfico del ruido blanco de 85 dB sobre la memoria de pares asociados, dependía de que la lista de estímulos fuese o no evaluada en el mismo orden de la presentación original. Estos autores consideran que ésto es atribuible al hecho de que cuando el nivel de activación general de la persona es alto, la atención está limitada a aquellas fuentes a las que se les da una alta prioridad (Hockey, 1970), sugiriendo que la capacidad de procesamiento "extra" asignada a la tarea principal se utiliza para preservar la información referente al orden.

Un aspecto que requiere clarificación cuando se trabaja con tareas de recuerdo del orden es el cómo se aprende el orden. De acuerdo con Heslip y Epstein (1969), el recuerdo del orden puede reflejar el recuerdo de la posición en la lista, el recuerdo de las posiciones secuenciales de los ítems, o puede reflejar ambos tipos de recuerdo. Si bien no es posible separar completamente al recuerdo de la posición del recuerdo de la secuencia, sí se puede hacer parcialmente; ésto se logra examinando la probabilidad del recuerdo en secuencia, cuando no se recuerda la posición, o evaluando el recuerdo de la posición, cuando el ítem precedente en la secuencia no está disponible como clave (Daee y Wilding, 1977).

En función de lo hallado por Domic (1973), se puede predecir que el recuerdo de la secuencia original aumentará con el aumento del nivel de intensidad del ruido. Daee y Wilding (1977) compararon el rendimiento, en una tarea de recuerdo libre de palabras, alcanzando bajo condiciones de ruido blanco a 75 dBC de intensidad, con el alcanzado en las condiciones en que la intensidad
del ruido era de 85 dBC, y con el alcanzado en ausencia de ruido. Observaron que la probabilidad del recuerdo en secuencia estaba afectada significativamente por el nivel de intensidad del ruido. En este sentido, la probabilidad de recuerdo en secuencia era menor en la condición de 85 dBC que en la de 75 dBC; sin embargo, esta probabilidad era más alta en la condición en la que el ruido blanco tenía 75 dBC, que en la situación en la que no había ruido alguno. En general, los autores consideraron que estos resultados no discrepaban de los obtenidos previamente sobre el recuerdo del orden.

En otros dos experimentos realizados también en 1977, Daee y Wilding evaluaron directamente la retención de la posición en la lista, para lo que se les pedía a los sujetos que ubicaran los ítems en las posiciones originales.

En uno de estos experimentos (exp: 3) el aprendizaje de la posición y el de la secuencia era incidental, ya que los sujetos no sabían de antemano que, tras recordar las palabras, se les pediría también recordar la posición que ocupaban en la lista original. En este caso, y con fundamento en los resultados obtenidos por Hockey y Hamilton (1970) y Domic (1973), los autores esperaban que el recuerdo de la posición mejorara cuando el nivel de intensidad del ruido aumenta, dado que los sujetos tratarían a la posición como una clave de recuperación adicional relevante. Los resultados reflejaron que el número medio de palabras en la posición correcta era mayor a medida que la intensidad del ruido aumentaba, mientras que el recuerdo de la secuencia correcta, al igual que en el experimento anterior, sólo era mejor en la condición de ruido blanco con 75 dBC de intensidad. Estos resultados vienen a confirmar que la intensidad del ruido influye tanto en el recuerdo de la posición como en el de la secuencia.

En otro de los experimentos de los mismos autores, (exp:4), el aprendizaje de la posición fue intencional, ya que con anterioridad los sujetos habían sido informados de que se les pediría que recordaran la posición original de las palabras. En este caso, los autores esperaban que la intensidad del ruido no tuviese efectos, ya que la atención estaría centrada en la posición, dado las características de las instrucciones. Los resultados de este experimento mostraron, sin embargo, que no había un efecto principal significativo del nivel de intensidad del ruido sobre el recuerdo de la posición.

Finalmente, Daee y Wilding (1977) evaluaron directamente el recuerdo de la secuencia, observándose que en la condición en que el ruido tenía 75 dBC, el recuerdo de la secuencia era significativamente superior al alcanzado en las condiciones de silencio y de 85 dBC, coincidiendo estos resultados con los obtenidos por los mismos autores en los experimentos uno y tres.

En el estudio de Millar (1979), ya mencionado en el apartado anterior, se había registrado el rendimiento de los sujetos experimentales en relación con el recuerdo del orden serial correcto. Empleando esta medida se observó, en primer lugar, un efecto principal significativo de la posición en la serie. Este efecto reflejó un recuerdo significativamente superior del material que se había presentado al comienzo y al final de la lista de consonantes. Esta variable interactuaba con la condición de recuerdo, observándose que el recuerdo del material presentado al comienzo de la lista mejoraba bajo la condición experimental en la que el repaso verbal interno se evitaba mediante el uso de una tarea articulatoria similar a la propuesta por Baddeley, Thomson y Buchanan (1975).

En segundo lugar, los resultados pusieron de manifiesto que la condición de ruido (ruido: 92 dBA y silencio: 75 dBA) interactuaba con la sesión (1a y 2a sesión).
con el tiempo en la tarea (la mitad y 2a mitad de cada sesión experimental) y con la condición de repaso (repaso verbal permitido y suprimido). No obstante, esta interacción se daba en una dirección distinta a la observada cuando se usaba como medida del recuerdo el recuerdo total correcto. Pues en tanto que, el ruido influye en el recuerdo total correcto, la disponibilidad de la información sobre el orden no se ve influenciada por la presencia de ruido cuando se permite repasar. Esto no es fácilmente explicable si se mantiene la hipótesis del enmascaramiento del repaso verbal interno propuesta por Poulton (1976), que el mismo modifica en 1977, coincidiendo con Millar (1979), quien propone que hay un repaso más intenso con ruido, hecho que mitiga los efectos del enmascaramiento. No obstante, este argumento no es satisfactorio bajo la condición en que el repaso está suprimido, tanto en la condición de silencio como en la de ruido. En esta situación experimental, el recuerdo del orden disminuye con el paso del tiempo bajo la condición de silencio, pero permanece estable bajo la condición de ruido, siendo el recuerdo del orden significativamente superior bajo esta última condición que bajo la de silencio. Parece así que cuando no se le permite al sujeto repasar, la información relativa al orden se conserva mejor con presencia de ruido. Estos resultados se pueden explicar si nos centramos en los efectos del ruido sobre la atención. En este sentido, cuando el aprendizaje se realiza en condiciones ruidosas, la atención se centra en la información referente al orden, prohibiendo este aspecto de la tarea ser considerado de manera significativa como dominante.

Tomando nuevamente como base la propuesta de Poulton (1977), y siguiendo dentro de esta línea de investigaciones, Wilding y Mohindra (1980) llevaron a cabo estudios con objeto de determinar si los efectos del ruido sobre el recuerdo ordenado se deben a la supresión subvocal, o a un incremento en el uso de la articulación. Estos autores predijeron, por una parte, que si el ruido incrementa el uso del lenguaje interno, este tipo de estimulación debe tener efectos similares a los hallados en aquellos casos en que las personas articulan en voz alta los ítems durante el período de presentación y/o el de retención de la información. En este sentido, Murray (1965, 1966, 1967, 1968) ha mostrado que la articulación en voz alta origina una huella fuerte en la memoria. Por otra parte, predijeron que si el efecto de la estimulación sonora tiene su causa en que esta enmascara el lenguaje interno, entonces, sus efectos serán semejantes a los provocados por la supresión articulatoria. De acuerdo con Richardson y Baddeley (1975), esta supresión disminuye el nivel de recuerdo en tareas de recuerdo libre. Resultados similares han sido obtenidos por Millar (1979), quien, como se ha expuesto anteriormente, observó que el recuerdo total de los sujetos disminuye cuando se les impide repasar verbalmente. En cuanto al recuerdo del orden, autores como Murray (1967), Healy (1975) y Millar (1979) han encontrado que la supresión articulatoria provoca mejoras en este tipo de recuerdo.

Con referencia a si el ruido y la supresión articulatoria tienen o no efecto similares sobre el recuerdo ordenado de consonantes, Wilding y Mohindra (1980) observaron que, en general, el rendimiento de los sujetos era peor en situación de supresión articulatoria cuando las consonantes eran presentadas a una tasa rápida (0.5 segs. entre ítems), cuando la similaridad acústica entre los ítems era alta y en las posiciones medias de la lista. Los resultados mostraron que en una condición de ruido con 85 dBC de intensidad había una mejora del rendimiento en aquellas listas que eran acústicamente similares, para todas las posiciones serials, exceptuando la primera, en la con-
dicción de no supresión articulatoria; sin embargo, la presencia de ruido no tenía efecto alguno en la condición de supresión. En conclusión, la supresión articulatoria y el ruido tiene efectos diferentes sobre el recuerdo del orden, sugiriendo que el ruido no sólo incrementa el uso del lazo articulatorio, sino que mejora la calidad de la información localizada en este lazo; esto puede suceder debido a una mayor duración de la huella de la memoria. Estos resultados también parecen indicar que el ruido actúa incrementando la fuerza del lenguaje interno.

En relación a si el ruido y la articulación en voz alta de los ítems tienen efectos similares sobre el recuerdo del orden, los resultados reflejaron que el ruido mejora el rendimiento, tanto cuando se trabaja con listas acústicamente similares como, en las no similares, en la situación en que el sujeto no articula en voz alta. Por el contrario, la articulación en voz alta de las consonantes provocaba un deterioro en el rendimiento cuando se trabajaba con listas confundibles (con gran similaridad entre ellas), pero lo mejoraba con listas no confundibles. Con tasas de presentación de los ítems rápidas, la articulación en voz alta provocaba, a diferencia del ruido, una mejoría del rendimiento.

Parece así que el ruido ayuda a mantener las huellas de la memoria induciendo gran seguridad en el lazo articulatorio, en el que se almacenan los ítems en el orden de llegada. Esto explicaría el hecho de que el ruido tenga un efecto benéfico sobre el recuerdo del orden. Por el contrario, la supresión de la articulación interna elimina la ventaja en la realización de tareas de recuerdo del orden, con ruido de 85 dB.

La mejora producida por el ruido se puede explicar como un enlentecimiento del repaso, lo que reduce el número de confusiones entre ítems. Este efecto es especialmente favorable en aquellos casos en que los ítems son acústicamente similares. El efecto benéfico del ruido, con tasas de presentación lentas, se puede explicar asumiendo que las tasas lentas hacen difícil la formación de asociaciones inter-ítems pero que, por el enlentecimiento del repaso y la prolongación de la duración del ítem, el ruido contrarresta esta dificultad (Mohindra y Wilding, 1983).

Empleando como fundamentación teórica la propuesta sobre el sistema de memoria de Baddeley y Hitch (1974), Mohindra y Wilding (1983) plantearon que el número de ítems que se ubicarían correctamente es igual a la probabilidad de que cada ítem conserve su posición, multiplicada por el número de ítems presentes en el lazo articulatorio, más una constante. Los autores asumen que, el número de ítems en el lazo articulatorio depende de la longitud del ítem, y que la probabilidad de que un ítem cualquiera conserve su posición, depende del grado de similaridad acústica de ese ítem con los demás. De esta forma, se observa que reduciendo el número de ítems en el lazo articulatorio (incrementando su longitud) se crea un efecto perjudicial en relación con los ítems no confundibles, siendo benéfico para los acústicamente similares. Los autores proponen que una articulación lenta trae como consecuencia que en el almacén a corto plazo estén disponibles pocos ítems, pero que, si además de ésto se considera el problema de recordarlos en el orden correcto, se observa que, cuando los ítems son muy similares entre sí, la probabilidad de darlos en el orden incorrecto aumenta a medida que aumenta el número de ítems en la memoria. De acuerdo con esto, paradójicamente, la persona puede acometer más errores cuando tiene más ítems en la memoria. Por ende, con ítems confundibles, el recuerdo en el orden correcto podría ser mayor si la persona articula lentamente, es decir, bajo condiciones de ruido. Si los ítems son fácilmente
discriminables, la confusión entre ítems incide menos sobre los errores en el orden, y la articulación lenta podría reflejarse en errores de memoria.

En el análisis de los resultados obtenidos en los experimentos que Mohindra y Wilding (1983) realizaron para hallar un soporte empírico a esta proposición, por una parte, observaron que en cuanto al efecto principal del ruido, el tiempo de articulación era mayor en una condición de ruido (85 dBC) que en una de silencio (65 dBC). Por otra parte, obtuvieron una interacción significativa entre las condiciones de sonido y el tipo de tareas que el sujeto realizaba.

La interacción reflejó que el ruido enlentecía la articulación en la tarea de repaso, pero que no tenía efecto alguno cuando lo que se le pedía a los sujetos era que leyeran las palabras. Este resultado sugiere que el efecto del ruido está concentrado en las etapas de repaso y de recuperación en los procesos de memoria.

Dentro de este tema, autores como Baddeley, Thomson y Buchanan, (1975) han observado que manteniendo constante el número de sílabas y de fonemas, pero variando la duración temporal de las palabras, las de duración corta son mejor recordadas que aquellas de duración temporal larga.

En base a esto y a los resultados mencionados, Mohindra y Wilding (1983) intentaron ver en qué medida el enlentecimiento del repaso tiene efectos diferenciales sobre el recuerdo de ítems en la posición correcta, dependiendo de la longitud y del grado de similitud acústica de los mismos.

Los resultados mostraron que la única interacción significativa era la obtenida entre ruido, longitud de la palabra y posición serial. Esta interacción indicó que el ruido afectaba, principalmente, a las palabras de duración temporal larga (0.77 segs.), en las posiciones seriales tempranas, de forma tal que el rendimiento con ruido era peor cuando se trabajaba con palabras largas que cuando se trabajaba con palabras de duración temporal corta (0.46 segs.). Este efecto adverso del ruido no aparecía en los ítems presentados al final de la lista.

A manera de conclusión, es plausible afirmar que el ruido puede mejorar o dañar el rendimiento, dependiendo del tipo de ítems que la persona deba recordar, y que los efectos del ruido pueden ser más consistentes y beneficiosos en aquellas tareas donde el repaso activo del material es la estrategia más adecuada, siendo poco probable, sin embargo, que todos los efectos del ruido puedan ser explicados en términos de un enlentecimiento del repaso.

Además de los aspectos hasta ahora mencionados, consideramos esencial en el estudio de los efectos del ruido sobre el recuerdo del orden el tener en cuenta el número de ítems que los individuos deben recordar. Este aspecto, entre otros, fue estudiado por Smith (1983a), evaluando además que cualquier interacción entre ruido y cantidad de memoria era consecuencia de cambios en la estrategia de recuerdo empleada por los sujetos.

Las condiciones de sonido fueron silencio (60 dBC) y ruido (85 dBC) en campo libre.

Los resultados evidenciaron que cuando los sujetos debían recordar solamente los últimos cinco ítems de la lista, la presencia de ruido mejoraba el recuerdo de todos los ítems excepto el del último, mientras que cuando tenían que recordar ocho ítems, el ruido mejoraba el recuerdo de los dos últimos ítems, pero dañaba el recuerdo de los anteriores. Estos resultados, en la condición definida por Smith como de gran carga de memoria, coinciden con los obtenidos por Hamilton, Hockey y Rejman (1977), ya que este autor observó que el ruido mejoraba el recuerdo de los ítems más recientes, pero que perjudicaba el recuerdo de los primeros ítems de la lista.
En base a los resultados de Smith (1983a) se puede afirmar que, la presencia de ruido no siempre conllevará a un deterioro del recuerdo de los ítems tempranos y a una mejora del recuerdo de los últimos, sino que esto dependerá, o bien de la cantidad de memoria requerida, o bien de la estrategia de recuperación utilizada por el sujeto.

La observación de Smith (1983a) de que la carga de memoria influye en el orden en que el sujeto recuerda el material estimulado, se evidenció bajo la condición de alta carga de memoria, en la que los sujetos tendían a recordar en el orden inverso al de presentación, mientras que en la de baja carga de memoria el orden de recuerdo y el de presentación correlacionaban positivamente. No obstante, el ruido no tenía efectos sobre la estrategia preferida. Esto último no permite confirmar la propuesta de Smith (1982) en relación a la teoría del cambio de estrategia. El problema de hasta que punto los efectos del ruido sobre el recuerdo del orden están o no relacionados con el tiempo de duración de la tarea con la exposición previa al ruido y con la práctica, también fue estudiado por Smith (1983b).

Este autor propone que las razones por las cuales los efectos del ruido pueden variar con el tiempo de duración de la tarea son:

a) La cuantía de la experiencia previa que el sujeto tiene con respecto a la tarea.

b) La duración de la exposición al ruido.

La principal dificultad en este tipo de estudios es lograr evaluar el orden, independientemente del recuerdo del ítem. Esto puede lograrse empleando un pequeño número de ítems fijos, presentados en ordenes diferentes en ensayos sucesivos.

La relevancia de la duración del experimento se investigó observando que los efectos del ruido cambiaban en función de esta duración. El ruido (85 dBC) producía un ligero incremento del número de letras recordadas en orden correcto en la primera mitad de las sesión, pero provocaba un deterioro de este recuerdo en la segunda mitad. Comparando las dos condiciones de sonido estudiadas (silencio: 55 dBC; ruido: 85 dBC), observó que bajo condiciones de ruido el recuerdo del orden era muy pobre, este empeoramiento general con ruido tenía su razón de ser en el bajo rendimiento de los sujetos en la segunda mitad de la sesión. Por último, los resultados mostraron que el orden de presentación de las condiciones de sonido era un factor muy importante, ya que aquellos sujetos que comenzaban trabajando con ruido se desenvolvían peor que los que empezaban con silencio, y continuaban con el mismo nivel de rendimiento, aún cuando luego fuesen evaluados en silencio.

Los resultados de este experimento no permiten determinar si el decremento hallado en la condición de ruido durante la segunda mitad de la sesión se debe a la exposición previa al ruido, a la práctica en la tarea o a ambos factores. Con este objetivo, Smith (1983b), evaluó a cuatro grupos de sujetos en distintas condiciones experimentales y el análisis de varianza reflejó que no había un efecto principal significativo de ninguno de los factores, ni interacciones significativas entre ellos. Los resultados muestran que la disminución en el recuerdo del orden no se produce cuando existe experiencia previa en la tarea, pero no la razón no es la de la exposición previa al ruido y viceversa.

Esta disminución sólo se hace patente cuando, simultáneamente, actúan ambos factores.

2.3. Resultados experimentales sobre efectos del ruido en el agrupamiento por categorías

Entre el amplio conjunto de tareas empleadas con frecuencia en las investigacio-
nes referentes a los efectos del ruido sobre los procesos de memoria, encontramos el uso de las conocidas como listas categorizadas. Este tipo de listas de palabras se caracterizan porque los ítems presentados como estímulos a los sujetos pueden agruparse en función de las categorías verbales a las cuales pertenecen.

En una primera aproximación, Daee y Wilding (1977), basándose en las observaciones hechas por Dornic (1973), predijeron que el recuerdo por categorías disminuiría con el incremento del nivel de intensidad del ruido presentado. Estos autores emplearon listas de palabras, en cada una de las cuales uno de los grupos de palabras no se relacionaban entre sí, otro eran nombres de animales y un tercero era de vegetales.

Los resultados experimentales mostraron que el tamaño del grupo de palabras recordadas no se veía significativamente afectado por el nivel de intensidad del ruido. No obstante, había una tendencia a que el recuerdo por categorías fuese menor en la condición en la cual el nivel de intensidad del ruido era de 75 dBC que en la de ausencia de ruido y a que este recuerdo por categorías aumentara de nuevo con un nivel de intensidad de 85 dBC.

Este resultado refleja una relación no monotónica entre longitud o tamaño del grupo y el nivel de intensidad del ruido, no predicha previamente por ningún autor. La disminución del nivel de recuerdo por categorías, bajo la condición de ruido blanco con 75 dBC de intensidad, fue observada nuevamente por estos autores en otro de sus experimentos.

Es interesante hacer notar que la medida usada por Daee y Wilding (1977) para el agrupamiento no es independiente del número total de palabras recordadas y que, como veremos a continuación, este es un aspecto relevante.

En 1981, Smith, Jones y Broadbent realizaron un conjunto de experimentos en los que estudiaron los efectos de distintos niveles de intensidad del ruido sobre el recuerdo de listas categorizadas, usando para ello distintas medidas del nivel de agrupamiento, que diferían en que algunas eran dependientes del número total de palabras recordadas y otras no.

En relación a las condiciones de sonido, los autores manejaron dos condiciones, ruido, como ruido continuo de campo libre a 80dB, y silencio, como ruido continuo de campo libre a 55dB.

Para el cálculo del nivel de agrupamiento, usaron las tres puntuaciones siguientes:

1.- La puntuación "D" (Darlymple-Alford, 1970). Este índice es independiente del número total de palabras recordadas.
2.- El número de grupos.
3.- La puntuación "Z" (Frankel y Cole, 1971).

Estas dos últimas medidas se ven influenciadas por el número total de palabras recordadas.

Analizando los resultados obtenidos con la puntuación "C", se obtuvo que no había un efecto principal significativo del nivel de intensidad del ruido, siendo significativas las interacciones entre ruido y sesión, y entre ruido y lista.

Cuando se empleaba como medida del agrupamiento el número de grupos, los resultados coincidieron con los hallados con la puntuación "C". Cuando se utilizaba la puntuación "Z", la interacción ruido por sesión era significativa e iba en la misma dirección que la observada con la puntuación "C". Sin embargo, con la puntuación "Z", el resto de las interacciones no alcanzaron un nivel de significación adecuado para considerarlos estadísticamente significativas.

En relación a la interacción hallada
como estadísticamente significativa entre ruido y sesión experimental, los autores consideraron que, probablemente, la misma fuese consecuencia del hecho de que en la segunda sesión experimental había un mayor número de categorías exhaustivas que en la primera, y con este tipo de categorías, el agrupamiento realizado por los sujetos era perfecto. Sin embargo, esta interacción también podía deberse a la práctica que tenían los sujetos con la tarea en la segunda sesión y/o al material verbal específico empleado.

La influencia de la naturaleza del material experimental fue analizada en un segundo experimento en el cual el agrupamiento era menos obvio, ya que se presentaban más categorías en cada lista y se variaba el grado en que cada palabra era un buen ejemplo de la categoría.

Los resultados mostraron que, en general, las puntuaciones "C" eran menores que las observadas en el experimento anterior, lo cual pone de manifiesto que la manipulación experimental hecha para dificultar el agrupamiento fue exitosa. Hubo una tendencia, no estadísticamente significativa, a que el nivel de agrupamiento fuese menor con ruido que con silencio. El único efecto principal significativo fue el del orden de presentación del tratamiento del ruido, en este sentido, las personas que recibieron el orden ruido-silencio obtenían puntuaciones "C" más altas que aquellas que recibieron el orden inverso.

Como era de esperar, el análisis de las puntuaciones "Z" mostró un efecto principal significativo de la lista, siendo el porcentaje de agrupamiento mayor en la lista con mayor número total de palabras recordadas por los sujetos.

En un tercer experimento, los autores variaron el nivel de intensidad del sonido en la condición de ruido, pasando de los 80 dB usados en los experimentos uno y dos a 85 dB, contrabalancearon el orden de las listas con las sesiones experimentales y eliminaron las categorías exhaustivas.

Los resultados de este tercer experimento mostraron que, analizando las puntuaciones "C", había un menor nivel de agrupamiento bajo la condición de ruido que bajo la de silencio. Así mismo había un efecto principal, significativo, de la sesión, observándose un mayor agrupamiento en la segunda sesión. Sin embargo, el analizar el número de grupos, encontraron que la dirección de estos efectos era totalmente distinta, así, había más grupos con ruido que con silencio y más grupos en la primera que en la segunda semana. Esta medida no se considera adecuada debido a su dependencia del número total de palabras recordadas.

Los resultados de estos tres experimentos demuestran que, cambios en el nivel de intensidad del ruido presentado y en el material utilizado, provocan variaciones en los resultados obtenidos, en cuanto a los efectos del ruido sobre el rendimiento. No obstante, parece quedar claro que el ruido influye en la organización del recuerdo, sin que esto implique que afecta al número de palabras recordadas por los sujetos.

Analizando detalladamente los resultados, Smith, Jones y Broadbent (1981), observaron que la reducción del nivel de agrupamiento en la condición de ruido en el experimento tres, y en la primera semana del experimento uno, se debía a que los sujetos tenían un recuerdo por categorías inicialmente pobre y un gran recuerdo subsecuente de palabras individuales, es decir, a que había cambios en los patrones de recuerdo. Esto indica que la presencia de ruido no produce cambios pasivos en el procedimiento de la información. Es, por lo tanto, importante evaluar la relación entre los niveles de procesamiento y el ruido cuando se trabaja con tareas de listas categorizadas.

Estudiando estos aspectos, los autores esperaban que, de acuerdo con lo propuesto
por Daee y Wilding (1977) el ruido produjo rasgos sesgos a favor de los niveles de procesamiento superficiales, que el recuerdo fuese mejor después de que los sujetos realizaban una tarea de clasificación semántica, dado que esta se caracteriza por requerir niveles de procesamiento profundos, y que el nivel de agrupamiento fuese mejor después de la realización de una tarea de clasificación semántica que después de la realización de una de clasificación física.

Los autores pusieron a prueba estas hipótesis y los resultados experimentales reflejaron que, en relación a las puntuaciones "C", no había un efecto principal significativo del tipo de clasificación, ni de la condición de sonido (Silencio: 55 dB; Ruido: 85 dB). En este análisis sólo fue significativa la interacción ruido con el orden del tratamiento de sonido, mostrando un incremento del nivel de agrupamiento en el orden ruido-silencio. A diferencia de esto, las puntuaciones "Z" mostraron un efecto principal significativo del tipo de clasificación observándose un gran agrupamiento después de la tarea de clasificación semántica. Este efecto se debía a que, después de este tipo de clasificación, los sujetos recordaban un mayor número de palabras y esta medida del agrupamiento depende del número de palabras recordadas.

En conclusión, los resultados obtenidos por Smith, Jones y Broadbent (1981) no permiten apoyar la hipótesis, según la cual las tareas de clasificación semántica provocan un mejor nivel de agrupamiento. Lo que sí parece quedar claro es que la variabilidad observada en cuanto a los efectos del ruido está causada por las características de la tarea, que son las que determinan, en última instancia, la estrategia que emplean por los sujetos. Smith Jones y Broadbent (1981) plantearon que; los resultados obtenidos en relación a los efectos de los niveles moderados de intensidad del ruido, pueden ser entendidos, o bien en términos de un cambio de la estrategia de recuperación de la información, o bien puede que sean consecuencia de que se dirige el esfuerzo hacia un aspecto de la tarea más que hacia otro.

Dado que con anterioridad, Daee y Wilding (1977) habían propuesto que la disminución en el recuerdo por categorías está asociada con un incremento en la probabilidad de que las personas recuerden en la misma secuencia, Smith, Jones y Broadbent (1981) calcularon la correlación entre el orden de presentación de la información y el orden de recuerdo, observando que, en la condición definida como ruido, no había altas correlaciones entre el orden de presentación y el de recuerdo.

Retomando el tema de los efectos del sonido sobre el recuerdo de listas categorizadas, desde una nueva perspectiva en la que se sustituyen las condiciones habituales de experimentación de ruido y silencio por las de sonidos y ruido habituales, Santalla y Santiesteban (1989) realizan experimentos en los que las condiciones de ruido son: silencio (60 dB), música clásica (70-80 dB) y taladro eléctrico (80-86 dB).

La tarea de los sujetos consistió en recordar, en cualquier orden, el mayor número posible de palabras pertenecientes a cuatro categorías preespecificadas, presentadas en pantalla en orden pseudoaleatorio.

Como una medida del nivel de agrupamiento, los autores emplearon en el índice ARC, propuesto por Roenker, Thompson y Brown (1971).

Los resultados de esta investigación mostraron que no había un efecto principal significativo de las condiciones de sonido sobre el nivel de agrupamiento pues, salvo caso excepcionales, el nivel de agrupamiento alcanzado por los sujetos no difería del esperado por azar. Esto puede indicar, o bien que los sujetos no se percataban de que una estrategia de recuerdo plausible era la de
agrupar las palabras por categorías, o bien, que no consideraron esta estrategia de recuerdo como la más adecuada. Este bajo nivel general de rendimiento puede enmascarar los posibles efectos de las distintas condiciones de sonido.

A pesar de que los resultados objetivos obtenidos acerca del rendimiento no mostraron variaciones en función de la situación sonora bajo la cual trabajaban los sujetos, se observó que ellos evaluaban de forma distinta cada condición de sonido. En este sentido, los sujetos afirmaban que cuando debían realizar la tarea de recuerdo bajo la presencia de sonido, este tipo de estimulación percutía negativamente sobre su rendimiento, independientemente de que ellos hubiesen evaluado la condición como placentera o displacentera. Por el contrario, cuando trabajaban en silencio afirmaban que esta condición había tenido efectos positivos sobre su rendimiento. Los autores explicaron estos resultados indicando que, dado que los sonidos empleados eran altamente familiares, se podía presuponer en los sujetos un nivel de adaptación a este tipo de estimulación auditiva lo suficientemente grande como para impedir que la misma afectase de alguna manera al nivel de rendimiento y a las estrategias de recuerdo de los sujetos.

2.4. Diferenciación de los efectos en tareas de recuerdo y de reconocimiento

Dentro del área de investigación de los efectos del ruido es importante diferenciar entre aquellas tareas en las que se le pide al sujeto que recuerde determinado material, de aquellas en las que, fundamentalmente, se le pide que identifique si un ítem dado pertenece o no a cierta categoría verbal. Este último tipo de tarea de identificación perceptual se conoce en el contexto de estos experimentos como "tareas de reconocimiento" y algunos investigadores han observado que los efectos del ruido son diferentes dependiendo del tipo de tarea. En este sentido, Eysenck (1975) realizó comparaciones entre el rendimiento alcanzado por las personas en tareas de recuerdo, y el obtenido con tareas de reconocimiento, cuando los sujetos se hallaban sometidos a situaciones ruidosas.

Sus resultados mostraron principalmente que, en silencio, la latencia de respuesta de los sujetos caracterizados por un alto nivel de activación general, era menor que la latencia de respuesta de aquellos con bajo nivel de activación. Esta relación entre latencia de respuesta y nivel general de activación fue observada solamente en aquellos casos en los que los sujetos experimentales debían realizar tareas de recuerdo, pero no en los que tenían que hacer la tarea de reconocimiento.

En relación al efecto del ruido, este mismo autor, observó que este tipo de estimulación tenía un efecto perjudicial sobre el rendimiento en la tarea de recuerdo, pero no en la de reconocimiento. Este efecto perjudicial del ruido aparecía con aquellos ítems que eran ejemplos no dominantes de la categoría en cuestión, pero no se producía cuando los ítems eran ejemplos dominantes. Así mismo, observó que el nivel general de activación de los sujetos interactuaba significativamente con el grado en que los ítems eran o no dominantes en la tarea de recuerdo. Esta interacción puso de manifiesto que las personas con alto nivel de activación responden más rápidamente a los ítems dominantes. Sin embargo, esta interacción no era significativa cuando se trabajaba con tareas de reconocimiento.

Eysenck (1975) concluyó en este estudio que los resultados permiten apoyar su postura teórica de que, los altos niveles de "arousal" facilitan la recuperación de ejemplos dominantes de una categoría verbal dada, y que los efectos del ruido sobre el
rendimiento en tareas de recuerdo de este tipo pueden ser entendidos en términos del "arousal" generado por la estimulación acústica.

Con posterioridad, Smith y Broadbent (1982) intentaron replicar estos resultados y ver hasta que punto los mismos eran generalizables a distintas situaciones experimentales.

Los resultados de sus experimentos no coincidieron con los obtenidos por Eysenck (1975). Esta discrepancia la atribuyen a ciertas diferencias entre ambos experimentos. En este sentido, Smith y Broadbent plantearon que el empeoramiento del rendimiento observado en los sujetos con alta activación, podría ser consecuencia de la localización de dicha activación, es decir, la activación podía reflejarse en forma de ansiedad más que en forma de excitación general, y es muy difícil controlar el grado de ansiedad generado en dos situaciones experimentales distintas. Además de este aspecto, hay que hacer notar que detalles tales como, el material experimental, la hora del día en que los sujetos realizaban las tareas, el tamaño muestral y el sexo eran distintos en ambos experimentos.

En 1988, Gisselbrecht-Simon estudia el rendimiento de los sujetos en tareas de recuerdo y reconocimiento comparando estos rendimientos cuando se trabaja con material verbal concreto y abstracto, así como bajo las condiciones de silencio y de ruido. Este autor observó que cuando se evalúa el rendimiento de los sujetos mediante un test de reconocimiento, la presencia de ruido tiene efectos perjudiciales, tanto si se usa material verbal concreto como abstracto. Por el contrario, cuando se evalúa el rendimiento en tareas de recuerdo se observa la no existencia de efectos del ruido en este sentido.

Así parece quedan patente que detalles metodológicos de los experimentos realizados para estudiar los efectos del ruido jue-gan un papel de tal importancia que, en muchos casos, la generalización de resultados no es plausible.

3. RUIDO Y ATENCION

Los estudios llevados a cabo en relación a los efectos del ruido sobre los procesos atencionales se desarrollan dentro de la concepción de que la estimulación sonora actúa como un activador y que, como tal, puede generar una sobreactivación en el individuo. Esta sobreactivación puede incidir negativamente sobre el rendimiento de los sujetos.

Muchos autores consideran que el ruido repercute sobre la atención focalizándola en los aspectos relevantes de la tarea, a expensas de aquellos de menor relevancia. Esta concepción se fundamenta en la conocida Ley de Yerkes-Dobson, que establece una relación curvilínea, en forma de "U" invertida, entre nivel general de activación y rendimiento.

Las investigaciones referentes a los efectos del ruido sobre la atención se pueden diferenciar en función de la manera en que se evalúa el proceso atencional. Así, existe un grupo de investigaciones en las que se estudia el proceso atencional a través de las ineficiencias realizadas a partir de los cambios en la eficiencia en tareas que, directamente, hacen referencia al proceso de memorización y recuperación de información, mientras que en otro grupo de estudios se mide la atención partiendo de los resultados observados en pruebas visuales. A estos dos grupos de estudios dedicaremos los siguientes apartados.

3.1. Atención inferida a partir de los cambios en la eficiencia en tareas que evalúan recuerdo a corto plazo

Dentro del primer grupo de investigaciones anteriormente mencionado, son para-
digmáticos trabajos tales como el de Hockey y Hamilton (1970), en el que se evaluían los posibles cambios en la localización de la atención hacia componentes relevantes e irrelevantes de la tarea, en una situación de recuerdo a corto plazo de palabras.

En este trabajo se le presentaban a los sujetos palabras ubicadas en distintas esquinas de una pantalla, bajo condiciones sonoras, bien de ruido o bien de silencio, instándoles a recordar las palabras en el mismo orden que el de su aparición. En este tipo de diseño se considera como clave irrelevante de recuperación el hecho de que cada palabra apareciese en un lugar diferente, y como clave relevante, el orden de presentación de los ítems a recordar.

Los resultados experimentales mostraron que las puntuaciones de recuerdo ordenado del grupo de sujetos que trabajaban con ruido eran superiores a las obtenidas por el grupo que trabajaba en la condición de silencio. En contraposición, el recuerdo de la localización de la palabra era significativamente más bajo en el grupo que se encontraba bajo la condición de ruido que en aquel que trabajaba bajo la de silencio.

Los autores concluyeron que, bajo la condición de ruido, se daba un incremento en la selectividad de la atención. En esta condición ambiental, la atención se centraba en el componente altamente prioritario de la tarea (orden de presentación de las palabras), a expensas del menos relevante (localización espacial).

Hamilton, Hockey y Quinn (1972) reevaluaron esta conclusión utilizando para ello el paradigma del aprendizaje de pares asociados. En este paradigma, los componentes de la lista son evaluados en dos ordenes distintos: en un caso se evalúan en orden aleatorio y, en otro, en el mismo orden en que se realizó la presentación original, lo que denominamos como orden fijo.

En este experimento, los autores observaron que había una interacción significativa entre las condiciones de sonido (silencio: 55 dBC; Ruido: 85 dBC) y la manera en que se evaluaban los componentes de la lista (aleatorio o fijo). Esta interacción reflejó que, bajo la condición de ruido, el recuerdo era superior al alcanzado en la condición de silencio. Esta mejoría del recuerdo con ruido aparecía cuando el orden en que se evaluaban los componentes de la lista era fijo, sugiriéndose que, con ruido, se almacena más información referente al orden. Los autores, atendiendo al hecho de que el citado efecto del ruido persistía a lo largo de los distintos ensayos, lo consideraron como un indicio de que este efecto era intrínseco a la situación de alto arousal generada por la estimulación sonora.

La naturaleza de la ventaja observada en el experimento mencionado, en cuanto al aprendizaje de listas de pares asociados presentados en orden fijo en presencia de ruido, la estudiaron los mismos autores a través de un nuevo experimento, hipotetizando que dicha ventaja podría ser consecuencia de un incremento en la información referente al orden, que funciona como clave de recuperación, ayudando al recuerdo de los ítems.

Partiendo de lo observado por Waugh y Norman (1965), Hamilton, Hockey y Quinn (1972) asumieron que, cuando se dan incrementos en la entrada, el material nuevo puede interferir con las listas aprendidas previamente. Esta interferencia se puede evaluar empleando el paradigma de la inhibición retroactiva de la forma A-B-A, donde A y B son dos listas diferentes y A1, es el retest de la lista A. Las dos listas de pares asociados pueden ser aprendidas con o sin ruido. El sonido usado por los autores fue un sonido de banda ancha, cuyo nivel de intensidad en la condición de ruido era de 85 dBC, y en la de silencio de 55 dBC.

Los resultados de este experimento in-
dicaron que el efecto del ruido sobre el recuerdo de la lista A, cuando se mantenían constantes las condiciones de presentación de la lista B, era reducir la tasa de olvido, y que el efecto del ruido sobre la lista B, cuando se mantenían constantes las condiciones de la lista A, era la de aumentar la tasa de olvido. Estos resultados muestran que la presencia de un sonido de 85 dBC, durante el aprendizaje de la segunda lista, incrementa la interferencia que esta lista provoca en el recuerdo de la primera lista aprendida.

Los autores concluyeron que el alto nivel de activación, generado por el ruido en el momento del almacenaje de la información, ayuda a la preservación a largo plazo del material de entrada.

Una forma de verificar estos efectos del ruido sobre la atención es ver hasta qué punto los efectos observados del ruido son similares a los provocados por otras variables también consideradas, en teoría, como activadores. Este tipo de comparación fue realizada por Davies y Jones (1975) en un estudio en el que, además de este aspecto, se intentó, por una parte, replicar los resultados ya mencionados obtenidos por Hockey y Hamilton (1970) y, por otra, se pretendió ver hasta qué punto la relación entre "arousal" y selectividad de la atención es lineal, tal y como propone Easterbrook (1959).

Para el logro de este último objetivo, los autores evaluaron si la selectividad de la atención aumentaba o no en una condición combinada, en la que se presentan dos estímulos activadores que fueron el ruido y un incentivo monetario.

Si la relación planteada por Easterbrook (1959) es cierta, entonces, se espera que haya un mayor grado de selectividad de la atención en aquellas condiciones experimentales en las que dos variables que incrementan el nivel de activación se presentan combinadas, al compararlas con aquellas condiciones en que se presenta solamente una de estas variables.

Trabajando con las variables ubicación de las palabras y recuerdo en orden correcto, los autores observaron que había una diferencia significativa entre los porcentajes de localizaciones espaciales recordadas correctamente en los grupos considerado, entre el grupo de sujetos que trabajaba bajo la condición ambiental en la que el nivel de intensidad del sonido era de 55 dBA, y el porcentaje alcanzado por el grupo de sujetos que trabajaba bajo condiciones de ruido con nivel de intensidad de 95 dBA. Esta diferencia indicó que, el porcentaje promedio de localizaciones correctamente recordadas, era significativamente más alto en el grupo bajo la condición de silencio (55 dBA) que en la de ruido (95 dBA). Estos resultados concuerdan con lo hallado previamente por Hockey y Hamilton (1970).

Por otra parte, el análisis de las puntuaciones brutas reflejó, en primer lugar, que el número promedio de palabras recordadas en el orden correcto, era significativamente más alto en los sujetos del grupo experimental que recibía incentivos monetarios, que en el grupo control. En segundo lugar, y en relación con las puntuaciones medias de las asignadas a la localización espacial de la palabra, estas puntuaciones eran significativamente más altas en el grupo considerado control.

Se observa así que hay cierta evidencia de incrementos en la selectividad de la atención, tanto en las condiciones en las que se presenta ruido, como en aquellas en las que se ofrece un incentivo monetario. Sin embargo, los autores no encontraron evidencia de un aumento adicional de dicha selectividad en las condiciones en las que se combinaban las dos variables activadoras (ruido e incentivo). Este último resultado indica que la relación entre arousal y selectividad de la atención es curvilínea y que, por lo tanto,
no es lineal como propone Easterbrook. Esta relación curvilínea fue sugerida por Davies y Jones (1975) en base al análisis detallado de los datos por ellos obtenidos, que mostró que el ruido reducía el efecto benéfico del incentivo sobre el rendimiento. Por otra parte, los incentivos contrarrestaban los efectos del ruido sobre la selección de claves irrelevantes de la tarea. De acuerdo con los autores, esto se puede explicar asumiendo que el incentivo monetario permite que la selectividad de la atención tenga lugar sin que ésta conlleva a una disminución en la capacidad atencional, mientras que, con ruido, el incremento de la selectividad tiene lugar como resultado de un reducción de la capacidad atencional. Esta propuesta difiere sustancialmente de la conclusión a la que llegaron Hamilton, Hockey y Quinn (1972) y Hockey y Hamilton (1970), según la cual, el ruido provoca un aumento en la capacidad atencional.

Con objeto de poner a prueba estas dos posturas teóricas contrapuestas, Fowler y Wilding (1979) realizaron un estudio en el que se evaluó la generalidad de los resultados obtenidos por Hamilton, Hockey y Quinn (1972), analizando hasta qué punto los incentivos actúan de manera similar al ruido en situaciones equivalentes.

En este estudio, los sujetos experimentales debían aprender un grupo de palabras sin sentido y el color con que se presentaban cada una de esas palabras. Una vez terminada la presentación, los sujetos tenían que responder frente a los colores presentados con las palabras que le correspondían.

El resultado principal fue que el rendimiento en la tarea de recuerdo del orden era superior en una condición experimental en la cual los sujetos recibían algún incentivo monetario. Esta superioridad solamente tenía lugar en aquellos casos en los que el orden en que se presentaban los colores a los sujetos en el periodo de evaluación, coincidía con el orden en que los mismos habían aparecido en la presentación original. O sea, en aquellas condiciones en que la clave de recuperación "orden" estaba disponible.

Este resultado concuerda con el obtenido por Hamilton, Hockey y Quinn (1972) en la condición en que los sujetos realizaban la tarea de aprendizaje de pares asociados bajo situación de ruido, siendo por ende consistente con la propuesta teórica de que, con un alto nivel de activación general, la capacidad atencional de la persona está disponible para que sea compartida con otras fuentes de recuperación de la información. No obstante, los autores se plantearon dos preguntas acerca del significado exacto de esta interpretación:

1.- En el caso en que el cambio fuese atencional, ¿se debe éste a un incremento de la capacidad o a una reorientación de la atención? Como se recordará, Hamilton, Hockey y Quinn (1972) abogaban por lo primero, mientras que Broadbent (1971) y, en cierta medida, Hockey y Hamilton (1970) sugerían que el ruido induce una reorientación de la atención hacia fuentes de información de alta prioridad, a expensas de las menos relevantes.

2.- ¿Es el cambio atencional un cambio atencional general, o bien, es un cambio en procesos de memoria, tales como incrementos de la dependencia a procesos de memoria de "bajo orden" (Dornic, 1973), o incrementos en el número de asociaciones secuenciales con ruido (Daee y Wilding, 1977), o incrementos del repaso subvocal (Folkard, 1976).

Para dar respuesta a las preguntas anteriores, Fowler y Wilding (1979), evaluaron en qué medida el incentivo monetario incrementaba la tendencia del sujeto a emplear otras claves de recuperación de la informa-
ción, además del orden de presentación de la misma, o sea, hasta qué punto el incentivo producía un incremento en la capacidad atencional, que repercutiera directamente en que los individuos fuesen capaces de utilizar otras claves de recuperación extras. Los autores esperaban que, si la propuesta de Davies y Jones (1975) era adecuada, el incentivo monetario incrementaría el uso de la localización espacial como clave de recuperación, especialmente en ausencia de claves de orden consistentes. Por el contrario, se esperaba que este incremento no ocurriera, si el aumento en el uso del orden como clave fuese reflejo de un cambio en el método de aprendizaje, como sugerían Dornic (1973) y Dae e Wilding (1977).

En su estudio, Fowler y Wilding (1979) emplearon tres condiciones experimentales, en una de ella, había incentivo monetario, y en una tercera, no había incentivo monetario (control).

El resultado obtenido fue que, bajo la primera condición experimental mencionada, se mejoraba el recuerdo de la localización espacial de la palabra, de lo que podría deducirse que el incentivo monetario incrementa la capacidad atencional, tal y como habían sugerido Davies y Jones (1975), o bien causar una reorientación de la atención hacia cualquier clave de recuperación relevante.

Los autores, adicionalmente, evaluaron los efectos producidos por distintos niveles de intensidad de ruido blanco (60 dB, 89 dB y 100 dB) sobre la tarea de recuerdo, en una situación experimental idéntica a la anterior, exceptuando la presencia de incentivo monetario.

Los resultados de este nuevo experimento mostraron claramente que, la probabilidad de recordar la localización disminuía al aumentar el nivel de intensidad de ruido. Este resultado apoya la sugerencia de Davies y Jones (1975) de que los efectos acti-

vadores del ruido y los del incentivo no son equivalentes. Con ruido, parece reducirse la capacidad atencional, mientras que el incentivo la incrementa. Sin embargo, una explicación simple, en términos de una reducción de la capacidad atencional con ruido, no da cuenta del incremento observado por varios autores Hockey y Hamilton (1970); Hamilton, Hockey y Quinn (1972); Dae e Wilding (1977) en el uso del orden de la información como clave de recuperación.

Los resultados experimentales obtenidos indican que, en general, la explicación teórica dada a los efectos del ruido en base al nivel de activación general de los sujetos, no es totalmente adecuada, pues tanto el ruido como el incentivo monetario son variables activadoras, pero sus efectos sobre el rendimiento son diferentes; los incentivos incrementan la capacidad atencional y la tendencia de los sujetos a utilizar cualquier clave de recuperación relevante, entre ellas el orden de presentación de la información, en presencia de ruido, sin embargo, sólo se puede demostrar el uso de ésta última clave, con disminución de la capacidad atencional.

3.2. Atención medida a partir de resultados en pruebas visuales

Una vez revisadas en el apartado anterior algunas de las investigaciones que abordan los efectos del ruido sobre la atención, partiendo de los resultados obtenidos con tareas de recuerdo a corto plazo, nos centraremos aquí en aquel otro grupo de estudios mencionado que toman como base el rendimiento de los individuos en tareas visuales. En este tipo de investigaciones, frecuentemente, se ha hecho uso de tareas del tipo de figuras enmascaradas, detección de señales, reacción serial y del test de Stroop, algunas de las cuales implican, adicionalmente, recuerdo a corto plazo de ítems.

Psicothema, 1990
3.2.1. Test de figuras enmascaradas

Broadbent (1971), planteó que uno de los efectos del ruido es el de incrementar la probabilidad de muestrear información de las fuentes dominantes, a expensas de las no dominantes. Este supuesto efecto del ruido fue estudiado por Smith y Broadbent (1980). Utilizando la prueba de figuras enmascaradas, compararon el rendimiento de los sujetos en la prueba, bajo una condición de silencio (55 dBC), con el obtenido por los mismos sujetos en una de ruido (85 dBC).

Se observó la no existencia de diferencias estadísticamente significativas entre ambas condiciones, en cuanto al número promedio de figuras completadas bajo cada condición.

Con el fin de evaluar la influencia que las variaciones en detalles específicos de la tarea pudieran tener sobre los resultados, los mismos autores (Smith y Broadbent, 1980) replicaron el experimento dando un mayor nivel de dificultad a la prueba, al suprimir la información anteriormente dada al sujeto sobre qué figura simple se hallaba dentro del patrón complejo.

Los resultados reflejaron que, al igual que en el experimento previo, el efecto del ruido sobre el número de figuras completadas por los sujetos no era estadísticamente significativo. El único efecto significativo fue el de la práctica en la tarea, observándose que el número promedio de figuras completadas era mayor en la segunda sesión experimental que en la primera.

En base a estos resultados los autores concluyeron que no se puede asumir, de forma general, que el efecto del ruido sea beneficioso en tareas que impliquen la selección de información relevante, sino que este efecto dependerá de las características particulares de cada tarea.

Trabajando con esta misma prueba, Hygge (1988) investigó el efecto combinado del nivel de intensidad del ruido y la temperatura ambiental, observando una interacción significativa entre ambas variables. Un análisis detallado de los datos mostró que esta interacción es antagonista, en el sentido de que la tendencia a un efecto negativo cuando está presente una de las dos variables se ve contrarrestado en presencia de la otra. El ruido y el calor parecen así cancelarse el uno al otro cuando se presentan combinados, y tienden a influir negativamente sobre el número de figuras enmascaradas identificadas por los sujetos, cuando se presentan aisladamente.

La interacción entre ruido y calor puede ser explicada partiendo de la suposición de que una cierta temperatura media disminuye el nivel general de activación de los individuos y que el ruido lo incrementa (Easterbrook, 1959).

3.2.2. Formas globales y detalles

Los efectos del ruido sobre el rendimiento en tareas que implican el procesamiento de formas globales y de detalles han sido estudiados por Smith (1985b), siguiendo el planteamiento de Broadbent (1971), y teniendo en cuenta además que, este autor (Broadbent, 1982) concluyó que, bajo situaciones de ruido, la atención podía ser desplazada selectivamente hacia los rasgos globales o hacia los detalles, y que es de gran importancia determinar los factores que provocan las alteraciones en el focus de la selectividad.

El material empleado en esta investigación fue diseñado por Navon (1977) y consiste en una serie de letras grandes conformadas por otras distintas más pequeñas. Al igual que otros autores, observó que hay una superioridad de los efectos a nivel global y que esta superioridad depende de factores tales como la diferencia entre el ángulo
visual y la ubicación del patrón global (Kinchla y Wolfe, 1979) y de la cantidad de detalles sobre los cuales se elabora el rasgo global (Martin, 1979).

Con este material se le pedía a los sujetos que recordaran tanto la letra grande como la pequeña. Bajo ciertas condiciones, el orden solicitado era el de grande-pequeña y en otras era el orden inverso, debiendo, así mismo, recordar la lista en el orden de presentación.

Todos los sujetos eran evaluados, tanto en presencia de un sonido continuo de campo libre con 60 dBC de intensidad (silencio), como en presencia de este mismo sonido con nivel de intensidad de 85 dBC (ruído).

Los resultados pusieron de manifiesto una interacción significativa entre la condición de sonido y el tamaño de la letra (pequeña o grande). Esta interacción mostró que, con ruido, se recordaban mejor las letras pequeñas y que, en silencio, eran mejor recordadas las grandes. El efecto del ruido sobre el recuerdo de las letras pequeñas era mayor cuando éstas eran las letras que los sujetos debían recordar en primer lugar. De igual forma, el sesgo en favor del recuerdo de las letras grandes, en la condición de silencio, era mayor cuando eran éstas las letras que los sujetos debían recordar primero.

Los resultados evidencian que el ruido influye selectivamente sobre la atención. La parte específica de la tarea que mejora con ruido viene dada por una gran variedad de parámetros de la tarea, uno de los cuales puede ser el tamaño del estímulo compuesto empleado (Smith, 1982).

Con la finalidad de estudiar la influencia sobre los resultados obtenidos con variaciones en los parámetros de la tarea, Smith (1985b) realizó un segundo experimento, en el que se cambió el tamaño de los estímulos utilizados. En general, la cantidad de letras grandes recordadas correctamente era mayor que la de pequeñas. En este caso, el efecto principal del ruido dejó de ser significativo, pero, nuevamente, había una interacción significativa entre condiciones de sonido y tamaño de la letra. Esta interacción iba en la misma dirección que la obtenida en el anterior experimento, es decir, con ruido el recuerdo de la letra grande era menor que con silencio, pero, a diferencia del experimento previo, el recuerdo de la letra pequeña era sólo marginalmente superior con ruido que con silencio.

El autor concluyó que, cuando las personas tienen que recordar los rasgos globales y los detalles de un estímulo dado, la presencia de ruido facilita el recuerdo de los detalles a expensas de los rasgos globales, pero que este efecto benéfico varía en función del tamaño del estímulo compuesto que el individuo deba procesar.

3.2.3. Tarea de vigilancia

Otro tipo de tareas consideradas generalmente como visuales y frecuentemente utilizadas en las investigaciones referentes a los efectos del ruido sobre la atención son las tareas de vigilancia. Los efectos del ruido sobre el rendimiento en estas tareas son muy complejos y se ha sugerido que las condiciones necesarias para que se observe un efecto dañino del ruido son las siguientes: que el nivel de intensidad del ruido sea superior a los 95 dBC, que las señales sean difíciles de ver, que la situación experimental no estime la precaución, y que el periodo de tiempo que el sujeto debe pasar observando sea largo (Broadbent, 1979).

Una de las tareas de vigilancia que implica monitoreo de dígitos es la creada por Bakan en 1963. En esta tarea se le presenta al sujeto una serie de dígitos y él debe identificar una secuencia particular como, por ejemplo, una serie de números impares todos distintos. Esta tarea fue empleada por
Jones, Smith y Broadbent (1979) en una investigación en la que se intentaba evaluar si niveles de intensidad moderados de ruido afectaban al rendimiento en tareas de detección de señales, aún cuando el tiempo de exposición fuese corto.

Los niveles de intensidad usados fueron: 85 dBC (ruído) y 55 dBC (silencio). La señal a detectar fue definida como la ocurrencia de tres dígitos impares sucesivos diferentes.

Los autores observaron que el número de errores por omisión era mayor cuando los sujetos trabajaban bajo la condición de ruido, pero, contabilizaron más errores por comisión en la condición de silencio. En este experimento, los datos sobre la percepción subjetiva de los sujetos sobre la perdida de concentración indicaron que esta perdida era mayor con ruido que en silencio. Un análisis más detallado mostró que los resultados podían estar relacionados con características particulares de las secuencias de estímulos, debido a que todos los errores por comisión se producían por la presencia de dígitos repetidos, que podían constituir la señal si el sujeto no se percataba de que había repeticiones. En este caso, una sugerencia plausible es que en situaciones ruidosas las personas detectan mejor este tipo de repeticiones. Probablemente, ésto sea consecuencia de un cambio en el nivel general de activación del sujeto, provocado por la estimulación sonora. Esto también explicaría el incremento en el número de errores por omisión observado con ruido, dado que en esta condición experimental habría mayores precauciones por parte de los sujetos.

Los resultados observados en relación con el número de errores por omisión, fueron obtenidos nuevamente en un segundo experimento, que era esencialmente idéntico al anterior excepto en que los sujetos recibían las condiciones de ruido y de silencio con un intervalo de tiempo de una semana.

En estas condiciones no hubo un efecto principal significativo de las condiciones de sonido sobre el número de errores por comisión, si bien se observó una tendencia de los sujetos a cometer más errores por comisión en la condición de ruido. Esto sugiere que estos efectos dependen de detalles específicos de la metodología utilizada.

En este experimento, el 75% de la muestra evidenció la utilización del repaso subvocal, lo que confirma la hipótesis de que con este tipo de tareas las personas lo utilizan como estrategia de recuerdo. Cualquier reducción en la efectividad de estrategia (Poulton, 1976) o aumento (Broadbent, 1978) interferirá en el proceso de detección de señales. En estos casos se podría esperar una interacción entre el efecto del ruido y la dificultad para codificar una señal particular. La dificultad para codificar señales puede ser variada segmentando la serie de dígitos en tres grupos, de forma tal que sea fácil articular un grupo de dígitos que aparecen juntos y detectar los blancos que coinciden con dicho grupo. Por el contrario, si el blanco se presenta entre dos grupos, es menos probable que los dígitos del mismo sean articulados juntos. Una señal definida como una secuencia impar-par-impar podría, por lo tanto, aparecer de una de las siguientes formas:

a) Señales intragrupo
b) Señales entregrupo tempranas.
c) Señales entregrupo tardías.

Jones, Smith y Broadbent (1979) plantearon que si el uso del repaso subvocal se ve reducido por la presencia de ruido, entonces se espera un gran deterioro en la detección de señales cuando estas coinciden con el grupo. Por el contrario, si el repaso subvocal se ve incrementado por el ruido, entonces, la detección de blancos que coinciden con el grupo se verá menos deteriorada que la detección de otro tipo de señales.
En cuanto al número promedio de errores por comisión, se observó que los sujetos erraban más cuando las señales eran entregrupo que cuando eran intragrupo. En este último caso, el efecto de las condiciones de sonido (Ruido: 80 dBC; Silencio 55 dBC) no llegó a ser significativa.

En cuanto al número de errores por omisión, tampoco hubo un efecto principal significativo de las condiciones de sonido, aún cuando, numéricamente, el número de errores por comisión era mayor en silencio que bajo la condición de ruido.

En general, los autores consideraron que los resultados no aportan evidencia experimental en cuanto a que haya un incremento o decremento en el uso que el sujeto hace del repaso subvocal bajo condiciones de ruido. Parece más bien que el efecto del ruido se centra en un cambio complejo en la estrategia utilizada por la persona para realizar la tarea.

Además de las mencionadas, en este campo se encuentran las investigaciones de Miles, Auburn y Jones (1984), quienes estudiaron los efectos combinados del entrenamiento y del ruido blanco intenso (95 dBC) sobre el rendimiento en la tarea de vigilancia de Bakan en su versión visual. Los resultados pusieron de manifiesto que, mientras que la detección de señales es sensible solamente al factor entrenamiento, el tiempo de respuesta es sensible tanto al entrenamiento en la tarea como al nivel de intensidad del ruido. En este sentido, el ruido tiende a prolongar los tiempos de respuesta en el grupo de sujetos entrenados cuando la probabilidad de que aparezca la señal es baja.

Sin embargo, Auburn, Jones y Chapman (1987) obtuvieron resultados diferentes. Estos autores pedían a los sujetos que detectaran una secuencia de dos dígitos iguales (señal), y que recordaran los dos dígitos precedentes a la señal. Los sujetos realizaban la tarea de vigilancia en dos ambientes acústicos: ruido intenso de 90 dBC y ruido con nivel de intensidad de 60 dBC. Se observó que, bajo la condición de ruido intenso, la velocidad de respuesta aumentaba, al compararla con la condición caracterizada por un nivel más bajo de intensidad del ruido. Este efecto fue atribuido por los autores al nivel de activación general inducido por el ruido en los sujetos.

De las dos últimas investigaciones mencionadas en relación con los efectos del ruido sobre la atención, se puede concluir que estos efectos dependen de la probabilidad de ocurrencia de la señal a ser detectada por los sujetos. En este sentido, Smith (1985 d) observó que el ruido de 85 dBC, que el autor considera como de intensidad moderada en el experimento, incide en que disminuya el tiempo de respuesta de los sujetos a las señales que tienen una probabilidad de ocurrencia alta, pero que provoca incrementos en la latencia de respuesta cuando las señales tienen una baja probabilidad de ocurrencia.

En 1988, Moch, utilizando una tarea de detección de señales en la que los sujetos debían tachar aquellas señales semejantes a un modelo, y comparando las condiciones de silencio, definida como ausencia de ruido, con la de ruido, definida como un ruido mixto con nivel de intensidad de 90 dBA, observó un efecto principal significativo del ruido sobre el número de errores. Este efecto era independiente de la sensibilidad individual de los sujetos frente al ruido.

Comparando los experimentos anteriormente reseñados se hace patente que los efectos observados del ruido sobre el rendimiento en tareas que implican detección de señales dependen considerablemente de las características particulares de la tarea experimental, de los detalles del procedimiento experimental y, por supuesto, de cómo se defina la condición denominada "ruido". En
este sentido, Koelega y Brinkman (1986) examinaron 21 estudios de vigilancia con objeto de evaluar la hipótesis según la cual, la clasificación de las tareas en términos de las demandas hechas al sujeto experimental permitirá aunar tantos resultados dispersos que, a veces, entran en conflicto en esta área de investigación. Los autores concluyeron que, aún cuando en los estudios se demanden a los sujetos tareas similares en cuanto a sus características formales, es sumamente difícil comparar estudios distintos debido, principalmente, a la variedad de ruidos involucrados en ellos y a las diferencias en cuanto a la manera de medir el rendimiento de los sujetos.

3.2.4. Test de Stroop

Muchas de las evidencias aportadas en favor de la propuesta de Broadbent (1971), de que el ruido incrementa la probabilidad de muestrear información hacia las fuentes dominantes, están basadas en los resultados obtenidos utilizando el test de Stroop bajo condiciones de ruido. Este test proporciona un índice de la interferencia, como medida del conflicto entre respuestas que compiten entre sí, en relación al color.

En general, se ha observado que la palabra incongruente produce una interferencia, y que los individuos son más lentos en esta condición que cuando simplemente deben nombrar el color sin que haya ningún otro nombre de color que sea incongruente.

Trabajando con esta prueba, Houston y Jones (1967) y Houstron (1969) habían observado que el ruido reduce la interferencia creada por los nombres de colores incongruentes y que esto puede ser interpretado en términos de que el ruido causa un incremento en la selectividad de la atención.

En 1974, Hartley y Adams, realizaron varios experimentos en los que estudiaban los efectos del ruido sobre el rendimiento en distintas versiones del test de Stroop. Estos autores esperaban que si el mecanismo de filtrado de la información que llega del medio ambiente está afectado por el nivel de arousal inducido por el ruido, tal y como proponía Broadbent (1971), el test de Stroop reflejaría deterioros en el rendimiento cuando la prueba se realiza bajo condiciones de ruido. Este deterioro podría aumentar con incremento en el tiempo de exposición al ruido.

Utilizando una primera versión, y con niveles de intensidad de 100 dBC y 70 dBC, los resultados mostraron que el ruido aumentaba la interferencia. Adicionalmente, se observó que este efecto del ruido no variaba en función del tiempo de exposición. Esto podría ser consecuencia del hecho de que la duración de la exposición al ruido estaba confundida con la práctica en la tarea. Para evaluar esto último, los autores realizaron un nuevo experimento en el que analizaron cada uno de estos aspectos por separado, usando una versión escrita del Stroop, en la que el sujeto debía marcar el ítem apropiado.

En este segundo experimento, un grupo de sujetos fue expuesto a sólo 10 minutos de silencio (nivel de intensidad: 70 dBC) y 10 minutos de ruido (nivel de intensidad: 95 dBC) y otro grupo tuvo un período de exposición a ambas condiciones de sonido de 30 minutos.

De los resultados obtenidos, los autores concluyeron que el efecto del ruido en la interferencia depende de la duración del periodo de exposición al ruido, observándose que la interferencia era menor en la condición de ruido que en la de silencio, cuando el período de exposición al ruido era de 10 minutos, pero que esta interferencia aumentaba bajo la condición de ruido cuando el período era de 30 minutos. Estos resultados coinciden con los hallados por O’Malley y Poplaswaky (1971) y con los cambios en el
rendimiento observados en otras pruebas, las cuales, en general, muestran que el deterioro en el rendimiento aumenta con el aumento del periodo de exposición al ruido. Los efectos benéficos o perjudiciales de las exposiciones cortas o largas al ruido sobre la interferencia pueden estar relacionados con cambios en el nivel de activación general de los individuos.

Además de este efecto de la duración del tiempo de exposición al ruido, hay evidencia experimental de que los efectos del ruido pueden extenderse más allá del periodo de exposición. El test de Stroop es una prueba especialmente sensible a este post-efecto. El rendimiento en este test tiende a cambiar con el nivel de activación, tal como el que es inducido por sonidos con altos niveles de intensidad.

Jones y Broadbent (1979) llevaron a cabo un estudio en el que analizaron un conjunto de factores que, probablemente, están relacionados con el efecto del ruido en el rendimiento en el test de Stroop. Con tal objetivo usaron la versión de la prueba empleada por Hartley y Adams (1974, exp: 2) y, adicionalmente, presentaron una prueba de lectura y el M.A.C.L.

El orden de presentación de estas tareas fue el siguiente: primero, prueba de lectura; segundo, el M.A.C.L. y por último el test de Stroop. La prueba de lectura podía, o bien ser realizada con un sonido suave de oficina (55 dBC) o con uno alto (80 dBC).

En relación al rendimiento en el test de Stroop, y comparando los resultados aquí obtenidos con los observados por Hartley y Adams (1974), se encontró que los sujetos experimentales (amas de casa) obtenían puntuaciones de interferencia más altas que los sujetos evaluados por Hartley y Admas (hombres). En general, se observó que la interferencia en el Stroop era inmune a la interrupción por trabajos previos bajo condiciones de ruido. Una posible explicación de la ausencia de un post-efecto del ruido en la interferencia es que, el hecho de que los sujetos puedan expresar sus sentimientos antes de realizar el test de Stroop, provoca una suavización del post-efecto del ruido. El post-efecto del ruido puede ser consecuencia de cambios en la estrategia, o bien, en un alto arousal persistente, puede ser consecuencia de la exposición al ruido.

Los resultados observados con el Stroop apoyan la idea de que los efectos del ruido a corto y a largo plazo son cualitativamente diferentes. Los efectos a corto plazo parecen ser consecuencia del alto nivel de activación general, mientras que los efectos a largo plazo pueden ser responsabilidad de la monotonia o el aburrimiento. Si esto es de hecho así, entonces, el ruido intermitente afectará en menor cuantía al rendimiento después de un periodo largo de exposición a este tipo de ruido, en tanto que no existirán diferencias entre distintos tipos de ruido que tengan igual sonoridad, en períodos de exposición cortos.

Las discrepancias entre los resultados obtenidos en distintas investigaciones en relación con el rendimiento en el test de Stroop, no pueden explicarse simplemente como función de las diferencias en los niveles de intensidad del ruido, de la duración de la exposición, o de la naturaleza de la tarea usada, ya que en muchas de estas investigaciones se dan, según Smith y Broadbent (1985), fallos metodológicos debido a que en ellas solamente se ha computado el rendimiento en la condición de interferencia del Stroop, sin analizar la velocidad en el nombramiento de colores, o en la lectura de nombres de colores.

Smith y Broadbent, en su trabajo de 1985, y con la finalidad de evitar esta debilidad metodológica, registraron los resultados obtenidos en las cuatro condiciones posibles del test de Stroop. Estas condiciones son:
1.-Tiempo invertido en leer números de colores pintados en negro (W).
2.-Tiempo invertido en decir los colores de los tintes (C).
3.-Tiempo invertido en decir el tinte con el que están pintados los nombres de otros colores (CW).
4.-Tiempo invertido en leer nombres de colores, que están pintados con colores incongruentes (WC).

Inicialmente los autores examinaron los efectos de una exposición previa al ruido con objeto de ver si esta influyó en el grado de interferencia, o si afectaba a la velocidad en las condiciones C y W, consideradas control. Los sujetos realizaron el test de Stroop en las cuatro condiciones dos veces, una después de un período de exposición a un ruido (85 dBC) y 20 minutos de duración y otra después de un período de tiempo similar de exposición al silencio (55 dBC). Durante el período de exposición a las condiciones de sonido, previo a la presentación del Stroop, los sujetos realizaban una de dos tareas: vigilancia o memoria.

Los investigadores observaron, en primer lugar, que la tasa C/W era menor después de la exposición al ruido que después de un período de silencio. Este efecto del ruido fue significativo y sugería que la reducción en la tasa C/W se debía a una disminución en la puntuación C, o sea, a una disminución en el tiempo requerido por el sujeto para nombrar colores y a un aumento de la puntuación de lectura de la palabra (W).

En segundo lugar, encontraron un efecto principal del orden de presentación de las cuatro condiciones del Stroop. Analizando las puntuaciones WC-W y CW-C, observaron que la condición WC producía menos interferencia que la CW.

Con posterioridad, Smith y Broadbent (1985) estudiaron el rendimiento en el test de Stroop cuando éste se realizaba bajo condiciones de ruido, con la finalidad de ver si esta variable también producía efectos distintos en el nombramiento de colores y en la lectura de nombres de colores.

Observaron que la tasa C/W promedio era menor en la condición de ruido que en la de silencio. Este efecto del ruido era significativo y reflejaba que, en este caso, los sujetos leían más lentamente las palabras en presencia de ruido que en presencia de silencio. El efecto sobre la tasa C/W, puede estar involucrado en los cambios en la interferencia ya observados en otros estudios. La inconsistencia de los efectos del ruido puede deberse a diferencias en la velocidad relativa de nombrar el color y leer la palabra.

Estudiando la influencia de la variable duración de la exposición al ruido, estos autores observaron que, con exposiciones cortas, no había un efecto significativo del ruido sobre la tasa C/W, ni había efecto alguno en el nombramiento de colores, ni en la lectura de palabras. Este resultado confirma lo expuesto previamente por Wilding y Mohindra (1983) en relación a que exposiciones cortas al ruido no afectan a la velocidad de lectura.

Smith y Broadbent (1985) concluyeron que las variaciones de los efectos del ruido en la condición de interferencia del Stroop se pueden explicar asumiendo que la cantidad de interferencia está relacionada con la tasa C/W en forma de "U" invertida. El hecho de que el ruido cause una reducción significativa en la tasa C/W indica que la interferencia puede aumentar, disminuir, o no variar, dependiendo del valor de dicha tasa en la condición de silencio. Por esta razón, es fundamental usar todas las condiciones del Stroop, y no sólo las de interferencia, debido a que el ruido tiene efectos distintos sobre el nombramiento de colores y sobre la lectura de los nombres de los colores.

El hecho de que los efectos del ruido permanezcan, aún cuando ya no está presente, no se puede explicar simplemente en tér-
minos de enmascaramiento del lenguaje. Una posible explicación es que el ruido influya en la entrada de información. Esto puede tener consecuencias distintas en la lectura de palabras y en el nombramiento, porque las personas pueden realizar la tarea de leer empleando alguna de las técnicas establecidas para la lectura, mientras que esta estrategia no es adecuada para nombrar colores.

3.3. **Otras variables relacionadas con los efectos observados del ruido sobre la atención**

3.3.1. **Ruido continuo versus ruido intermitente**

En todos los estudios analizados hasta el momento se puede comprobar que en las condiciones de sonido utilizadas por los investigadores, mayoritariamente, se ha hecho uso de ruido continuo, sin estudiar los efectos del ruido intermitente sobre el rendimiento en la tarea. Algunos resultados experimentales, sin embargo, muestran que ambos tipos de ruido pueden tener efectos diferenciales sobre el rendimiento.

Haciendo referencia específica a los efectos del ruido sobre los procesos de atención, Fisher (1972, 1973) observó que bajo condiciones de ruido intermitente había una lentificación en la tarea de reacción serial de cinco elecciones. Este efecto perjudicial tenía lugar cuando el pico del nivel de intensidad del ruido coincidía con el periodo en que el sujeto ejecutaba las respuestas.

Woodhead (1964), por su parte, había encontrado que los "estallidos" del ruido eran perjudiciales cuando estos aparecían en el momento de absorción de la información en un tarea mental de aritmética, pero que no producían efecto alguno cuando los presentaban en el periodo de cálculo. Resultados similares fueron obtenidos por Salamé y Wittersheim (1978).

En 1985, Li, Cai, Dai y Guo, estudiando los efectos del ruido industrial sobre la memoria y la atención, compararon el rendimiento de dos grupos de sujetos, uno constantemente expuesto a ruido y el otro en un ambiente silencioso. Las condiciones de ruido para los sujetos experimentales fueron las de: ruido intenso continuo (más de 95 Db), ruido intenso intermitente (más de 95 dB), ruido moderado continuo (75-85dB) y ruido moderado intermitente (75-85 dB). Los resultados mostraron que, en general, las puntuaciones obtenidas por los sujetos experimentales (ruido) en la prueba de memoria eran significativamente inferiores que las obtenidas por el grupo control (silencio). Adicionalmente, y comparando las condiciones de ruido continuo y ruido intermitente se observó que el rendimiento, en la prueba de memoria, de los sujetos expuestos al ruido intermitente era superior al de aquellos sujetos expuestos al ruido continuo, no obstante, estas diferencias no eran estadísticamente significativas. En la prueba de atención se obtuvieron resultados similares salvo que, en esta prueba el rendimiento estaba determinado, principalmente por el nivel educativo de los sujetos, y sólo secundariamente por la presencia de ruido.

Como se ha mencionado, Hartley y Adams (1974) habían planteado que el efecto del ruido sobre el rendimiento en la condición de interferencia del Stroop estaba relacionado con la duración de la exposición al estímulo sonoro y que esta relación podía ser entendida en términos de los cambios provocados en el nivel general de activación de los sujetos. Según estos autores, una exposición corta al ruido puede ser "despertadora". Este efecto inicial del ruido puede ser atribuido al comienzo de una estimulación intensa a la que el sujeto se adaptaría. La posterior reducción del nivel de activación podría atribuirse a la monotonía que acom-
paña a una exposición de larga duración al estímulo sonoro.

Basándose en esta propuesta, Hartley (1974) planteó que si la última parte del efecto adverso del ruido continuo se debía a la monotonia, entonces, la presentación de un ruido intermitente reduciría esta parte del efecto dañino. Así mismo, propuso que si la reacción adversa que sigue al comienzo de la estimulación sonora se debe a su intensidad, entonces, el uso de protectores al principio de la exposición sería beneficioso, este efecto desaparecería en el momento en que empezara la adaptación del individuo a la situación acústica, y en este momento, predominaría el efecto de la monotonia.

Hartley (1974), evaluó esta postura empleando una tarea de reacción serial de cinco elecciones, que se ejecutaba bajo tres condiciones de sonido: silencio (70 dBC), ruido continuo (95 dBC) y ruido intermitente (70 dBC y 95 dBC). Esta última condición consistía en la presentación alternada de ambas intensidades de sonido. La duración media del intervalo con 70 dBC era de 1.5 segs. y la del de 95 dBC era de 3 segs.

Los datos obtenidos evidenciaron que había un efecto adverso de las condiciones de ruido sobre el número de pausas hechas por los sujetos. Este efecto reflejó que el número de pausas aumentaba cuando los sujetos se encontraban en la condición de ruido continuo, o en la de ruido intermitente. Las condiciones de ruido también afectaron al número de errores cometidos por los sujetos experimentales, observándose que estos errores aumentaban, tanto cuando los sujetos se hallaban en la condición de ruido intermitente, como cuando estaban en el ruido continuo.

Los resultados de este experimento también mostraron que el efecto benéfico del ruido intermitente tiene lugar solamente después de los primeros 10 minutos de exposición, y que en los primeros momentos de la prueba, el efecto del ruido intermitente era igual al efecto del ruido continuo. Este patrón de resultados coincide con la espera-do por el autor.

Analizando el efecto del uso de protectores en las mismas condiciones que las usadas en el experimento anterior, el autor observó que, en relación a las pausas, en general, había un efecto adverso del ruido continuo al compararlo con el silencio. Por otra parte, encontró que en los primeros 20 minutos de la prueba, el ruido no tenía efectos adversos cuando los sujetos hacían uso de los protectores. Por el contrario, cuando éstos no hacían uso de los protectores, el ruido afectaba negativamente al rendimiento en los primeros 20 minutos de la prueba. En los últimos 20 minutos de la tarea, la interacción entre uso de protectores y ruido desaparecía. Este resultado indica que el uso de protectores reduce el efecto adverso del ruido en la primera mitad de la sesión, pero que después no tiene ningún efecto.

Hartley (1974) concluyó que el ruido continuo y el intermitente son aproximadamente iguales en su cualidad "despertadora", y que el principal beneficio de la intermitencia es que reduce la monotonia. Esto implica que la monotonia no puede ser considerada simplemente como el polo opuesto de la activación. En realidad, parece haber dos mecanismos involucrados en el arousal, uno de los cuales se ve afectado por la monotonia y el otro por por la intensidad del ruido.

3.3.2. Formas de presentación del ruido

El tipo de sonido no es, sin embargo, la única variable que guarda relación con los efectos del ruido observados por los investigadores. Otra de las variables a considerar es la forma en que se presenta la estimulación auditiva.

En relación con este factor se ha obser-
vado que el ruido continuo de campo-libre y con altos niveles de intensidad afecta al rendimiento de los individuos en tareas tales como los tests de reacción serial, los de vigilancia, los de discriminación visual, etc. (Broadbent, 1971). Por el contrario, el ruido de alta intensidad en determinadas tareas que sí se ven afectadas por el ruido de campo-libre (Broadbent, 1958, 1960).

Este grupo de investigaciones ponen de relieve que la forma en que se presenta el ruido, utilizado como condición experimental, actúa de variable moderadora que incide sobre el hecho de que los resultados obtenidos experimentalmente difieran de unas investigaciones a otras. No obstante, no hay unanimidad en cuanto a estas conclusiones y se pueden encontrar algunas indicaciones de que el ruido presentado mediante audífonos tiene efectos similares al de campo-libre (Corcoran, 1962; Wilkinson, 1963; Smith y Broadbent, 1985).

Es evidente que hay diferencias entre el ruido de campo-libre y el presentado a través de audífonos. Estas diferencias implican, por una parte, la similaridad de la información recibida por ambos oídos y, por otra, a la intensidad del ruido percibida. En cuanto a este último aspecto, cuando el ruido se presenta por audífonos, la intensidad percibida puede ser de más de 10 dB menor que la percibida con ruido de campo-libre, teniendo ambos ruidos iguales niveles de presión sonora (Hartley y Carpenter, 1974).

En 1974, Hartley y Carpenter compararon los efectos de presentar el ruido por audífonos o en campo-libre sobre el rendimiento en un test de reacción serial de cinco elecciones, cuidando que el nivel de presión sonora fuese idéntico en ambas formas de presentación. Así mismo, los autores trabajaron con dos condiciones de sonido, ruido (95 dBC) y silencio (70 dBC).

Los resultados de este experimento reflejaron, en primer lugar, que los sujetos experimentales afirmaban que ambos métodos de presentación "sonaban" de manera diferente. En este sentido, el ruido presentado en campo-libre era percibido como más alto que el mismo ruido presentado a través de audífonos. El análisis detallado del espectro del ruido reveló que, en la condición de campo-libre había numerosas resonancias, las cuales estaban entre uno y seis decibe- lios, mientras que el ruido presentado mediante audífonos estaba completamente libre de resonancias.

En segundo lugar, como resultado interesante en relación con el rendimiento de los sujetos en la prueba de reacción serial, no se hallaron efectos significativos, ni de la condición de sonido (ruído y silencio), ni de la forma de presentación del estímulo sonoro. En este análisis, el rendimiento se midió como número de respuestas correctas. En cuanto a los errores, se observó un efecto significativo de la condición de sonido, reflejando que los sujetos cometían más errores bajo la condición de ruido que bajo la de silencio, pero con esta medida, tampoco había diferencias significativas entre la presentación del ruido a través de audífonos y la de campo-libre.

De igual manera, evaluando las pausas, obtuvieron que en la condición de ruido había más pausas que en la de silencio, pero que este incremento de las pausas bajo la condición de ruido ocurrió tanto con la presentación por audífonos como con la de campo-libre.

Los resultados en relación al número de errores y al número de pausas concuerdan con lo observado por Hartley (1974), no pudiéndose descartar la hipótesis de que estos efectos negativos del ruido estén relacionados con la sonoridad y/o con la molestia percibida por los sujetos experimentales y con el aumento de la monotonia y el aburrimiento causado por largas exposiciones a ruidos contínuos.
4. CONCLUSIONES

La mayor parte de los trabajos considerados en esta revisión evalúan el rendimiento de los sujetos en tareas de recuerdo y atención.

Considerando en primer lugar los experimentos relativos al recuerdo, podemos decir que la fundamentación teórica de una de las explicaciones de los efectos del ruido sobre el rendimiento del ser humano cuando realiza tareas que implican memoria, viene dada por la teoría del "multimalcenc" de Atkinson y Shiffrin. La función que desempeña este almacén es la de mantener la información durante un breve periodo de tiempo, lo que permite transmitirla, de forma selectiva, a otro almacén, generalmente a corto plazo. Por lo tanto, en el recuerdo juega un papel importante el proceso repetitivo interno del sujeto, lo que se denomina enmascaramiento del lenguaje interno.

Cuando se analizan distintas formas de recuerdo, por ejemplo: recuerdo total correcto, recuerdo del orden serial correcto, errores por comisión, confusiones acústicas y errores por omisión, en presencia y en ausencia de ruido, existen diferencias entre los niveles de recuerdo alcanzado por los sujetos bajo ambas condiciones acústicas.

En tareas de recuerdo, se observa un mejor rendimiento en los sujetos que no han estado sometidos al ruido, si bien los efectos dependen del tipo de ruido utilizado. Generalmente, el ruido gaussiano o ruido blanco, con niveles de intensidad moderados, no deteriora el proceso de recuerdo a corto plazo.

La explicación que se da para el menor rendimiento en condiciones de ruido es que el ruido crece el nivel de activación general de los sujetos y ésto que, en principio, puede ser ventajoso en relación con el rendimiento en cierto tipo de tareas, resulta que lo que produce es una sobreactivación que conlleva un descenso del rendimiento.

En relación con el enmascaramiento del repaso verbal interno, y con la hipótesis hecha por Mohindra y Wilding en 1983 de que errores en el orden y la articulación lenta podría reflejarse en errores de memoria en presencia de ruido, se ha podido comprobar que el ruido enlentece la articulación en la tarea de repaso, especialmente con palabras desconocidas o de mayor longitud, y que existen interacciones entre el ruido y la tarea.

En nuestros experimentos de recuerdo a corto plazo de listas de palabras categorizadas en presencia de ruidos y sonidos, juzgados como tales por los sujetos según bajo la consideración de agradables o desagradables, no se han encontrado diferencias estadísticamente significativas, ni en el número promedio de palabras correctas recordadas, ni en el número medio de errores por comisión. El efecto significativo en cuanto a las condiciones de sonido es el de la percepción subjetiva de los sujetos que opinaban que ciertos sonidos habían tenido un efecto muy negativo sobre su rendimiento. Por ello, concluimos que en condiciones sonoras adversas el sujeto sufre y paga un coste psicológico para mantener su nivel de rendimiento.

En cuanto a los efectos del ruido sobre la atención también son significativos, y pueden resumirse diciendo que, en presencia de ruido, los sujetos centran su atención en los aspectos más relevantes. Sucedía así que, en los experimentos en los que se pide a los sujetos recordar también el orden, en presencia de ruido, la atención se centra en la información referente al orden, porque este es el aspecto de la tarea considerado como dominante, pero no se mejora el recuerdo, y sigue siendo menor el rendimiento global en la tarea de recuerdo.

Por lo tanto, se puede decir que el ruido no produce un efecto beneficioso en
cualquier a un mejor rendimiento, sino que focaliza la atención del sujeto hacia aspectos dominantes y prioritarios de la tarea.

El análisis detallado de los resultados experimentales que han obtenido distintos investigadores, en relación a los efectos del ruido sobre los procesos atencionales, pone de manifiesto que hay un acuerdo en cuanto a que el ruido, aún cuando no se presente con niveles de intensidad excesivamente altos, incide sobre el rendimiento de los individuos. Sin embargo, cuando se intenta establecer la dirección de dicha incidencia, se evidencia que los resultados varían considerablemente de unas investigaciones a otras. En algunos casos, la presencia de ruido, en situaciones en que los sujetos deben realizar tareas específicas, influye negativamente sobre el rendimiento, sin que, como se ha mencionado anteriormente, este resultado sea generalizable a todo tipo de situaciones y tareas.

Estudiando la variabilidad observada en los resultados de cada una de las investigaciones se evidencia que hay un conjunto de factores, intrínsecos a la metodología experimental utilizada, que influyen en esos resultados.

A. Un primer grupo de factores es aquel que hace referencia a las condiciones de sonido empleadas, pudiéndose señalar como condiciones específicas el nivel de intensidad, el tipo de ruido, el orden, duración, y la forma de presentación del ruido.

El nivel de intensidad del ruido constituye uno de los aspectos más importantes del que dependen los resultados. Las investigaciones analizadas no permiten establecer una clara relación causal entre el nivel de intensidad del ruido y rendimiento del sujeto aún cuando se evidencia que el ruido puede afectar al rendimiento del sujeto en la tarea, a pesar de que el nivel de intensidad del mismo no supere los 90 dB.

Otro de los aspectos que incide sobre los resultados es el tipo de ruido utilizado. Los investigadores han empleado, en la mayoría de los casos, ruido continuo, aún cuando se ha observado que el ruido contínuo y el intermitente tienen efectos diferenciales sobre el rendimiento. Los resultados experimentales ponen de manifiesto que, el rendimiento de lo sujetos es superior cuando son expuestos al ruido intermitente que cuando lo son al ruido continuo. No obstante, el efecto benéfico del ruido intermitente depende del transcurso del tiempo, siendo su principal beneficio el que reduce la monotonía en la tarea.

Un tercer factor que influye en los resultados experimentales es la forma en que el ruido se le presenta al sujeto. Muchas de las investigaciones evidencian que el efecto de la presencia del ruido continuo en campo libre difiere del producido cuando el ruido se presenta a través de audífonos. Las diferencias entre ambas formas de presentación implican, por una parte, la similaridad de la información recibida por ambos oídos y, por otra, la intensidad con que el ruido es percibido por los sujetos.

El orden de presentación de los sonidos, así como la distribución de los tiempos inter e intra tipo de sonido, y condiciones de exposición, son factores a tener en cuenta en la interpretación de los resultados, ya que se han observado diferencias significativas en experimentos en los que el orden de presentación fue el de ruido-silencio, frente a aquellos en los que se procedía de manera inversa, recibiendo el sujeto los estímulos en el orden silencio-ruido. Así mismo, las diferencias fueron significativas, y no siempre en el mismo sentido, cuando se cambiaban las condiciones en cuanto al orden de la serie de sonidos a presentar, tiempos entre sonidos y amplitud de los intervalos temporales entre sesiones.

Por último, en cuanto a la duración del
tiempo de exposición al ruido, se puede decir que, en general, se da un deterioro en el rendimiento de los sujetos bajo las condiciones experimentales en las que aumentan los tiempos de exposición al ruido.

B. Un segundo grupo de factores que inciden en la variabilidad obtenida en los resultados experimentales es el relativo a las características particulares de la tarea a realizar por los sujetos. En este sentido, los investigadores coinciden en considerar que son las peculiaridades de la tarea el factor principal que hace que las distintas investigaciones y sus resultados no sean comparables, debido a que, en última instancia, son las características de la tarea las que determinan la estrategia de resolución que emplea el sujeto.

B.1. Haciendo referencia al grupo de investigaciones que estudian los efectos del ruido sobre el recuerdo de información, se observa que los aspectos primordiales a considerar son los siguientes:

a. Que las palabras a recordar estén o no relacionadas semánticamente.
En este sentido, los resultados obtenidos varían en función de que las categorías semánticas implicadas sean o no exhaustivas, del número de categorías presentes en las listas, de que las palabras a recordar sean o no ejemplos dominantes de cada categoría, y del índice utilizado por el experimentador para determinar el nivel de agrupamiento por categorías alcanzado por los sujetos. No obstante, los resultados experimentales parecen dejar claro que el ruido influye en la organización del recuerdo, sin que esto signifique que afecta al número de palabras recordadas.

b. Que las palabras a recordar tengan o no connotaciones emocionales para el sujeto.

c. Que la tarea implique recuerdo libre o recuerdo ordenado del material estímular.
Los resultados experimentales ponen de manifiesto que, si bien el nivel de intensidad del ruido no influye diferencialmente en el número total de ítems recordados, el número de ítems recordados en la posición correcta sí varía en función de este nivel de intensidad.

d. El número de ítems que el sujeto deba recordar.
La observación general de que el ruido conlleva un deterioro del recuerdo de los ítems tempranos y una mejoría del recuerdo de los últimos ítems, depende del número de ítems que se pida al sujeto que recuerde.

e. La duración temporal de las palabras, es decir, el tiempo que el sujeto tarda en leer cada una de las palabras. En este sentido, la presencia de ruido puede afectar favorable o desfavorablemente al rendimiento, dependiendo del número de sílabas y fonemas de las palabras, y de la duración temporal de las mismas.

B.2. En cuanto a las investigaciones relativas a los efectos del ruido sobre los procesos atencionales, las características de las tareas que inciden en la obtención de resultados experimentales distintos son las siguientes:

a. El nivel de dificultad de la prueba: Test de figuras enmascaradas.

b. El tamaño del estímulo compuesto empleado por el experimentador: Tareas que implican procesamiento de formas globales y detalles.

c. Las características particulares de la secuencia de estímulos que constituye la señal a ser detectada, el nivel de
d. Test de Stroop: En relación con esta prueba, las discrepancias entre resultados no pueden explicarse simplemente como función del nivel de intensidad del ruido, de la duración de la exposición o de la naturaleza de la tarea, ya que, en muchas de las investigaciones, hay errores metodológicos al computar el rendimiento de los sujetos sólo en la condición de interferencia del Stroop, sin analizar la velocidad para nombrar colores, o en la lectura de nombres de colores.

C. Un tercer grupo de factores considerados importantes en la comparación de los resultados obtenidos por distintos investigadores es el que hace referencia a cómo se mide el nivel de rendimiento de los sujetos experimentales. En este sentido, el rendimiento en tareas que implican el recuerdo de información puede o bien medirse como recuerdo total correcto, o puede estar basado en el número de errores por comisión, o en la velocidad con que los individuos codifican la información tiempo (tiempo de reacción). El uso de cada una de estas formas de medir el rendimiento arroja resultados diferentes en cuanto a si el ruido incide o no sobre el rendimiento, y en cuanto a la dirección de dicha influencia.

D. Para finalizar, un cuarto grupo de factores que inciden en que los investigadores obtengan resultados contradictorios en relación a la influencia del ruido sobre el rendimiento, se refiere a aquellos factores que pueden considerarse como intrínsecos a los sujetos experimentales. Ente estos factores cabe destacar por su importancia los siguientes:

a. La sensibilidad individual al ruido, entendida como la reacción de rechazo experimental a nivel subjetivo y que se evidencia fisiológica y conductualmente.

b. La evaluación subjetiva que los sujetos experimentales hacen de los sonidos bajo cuya condiciones trabajan.

c. La experiencia previa de los sujetos en la tarea específica a realizar.

d. Las características de personalidad de los sujetos experimentales.

BIBLIOGRAFÍA

Hamilton, P.; Hockey, G. R. J. y Quinn, J. G.

