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Antecedentes: Durante el siglo XX el coeficiente alfa (α) fue ampliamente utilizado en el cálculo de la consistencia 
interna de las puntuaciones de los test. Después de identificar algunos malos usos, a principios del siglo XXI se 
difundieron alternativas, especialmente el coeficiente omega (ω). Actualmente α resurge como una opción aceptable. 
Método: Revisamos aportaciones académicas, hábitos de publicación en revistas y recomendaciones de textos 
normativos con el fin de identificar buenas prácticas en la estimación de la fiabilidad de consistencia interna. Resultados: 
Para guiar el análisis, proponemos un diagrama de decisión en tres fases, a saber, descripción de los ítems, ajuste del 
modelo de medida del test y elección del coeficiente de fiabilidad de las puntuaciones. Para su ejecución proporcionamos 
recomendaciones sobre el uso de los programas R, Jamovi, JASP, Mplus, SPSS y Stata. Conclusiones: Tanto α como 
ω son adecuados para ítems que se distribuyen de forma aproximadamente normal y medidas aproximadamente 
unidimensionales y congenéricas sin cargas factoriales extremas. Cuando los ítems tienen otra distribución, un fuerte 
componente específico o sus errores están correlacionados, resultan más adecuadas variantes de ω. Algunas de ellas 
requieren diseños específicos de obtención de datos. A nivel práctico recomendamos un uso crítico del software.
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RESUMEN 

Background: During the 20th century the alpha coefficient (α) was widely used in the estimation of the internal 
consistency reliability of test scores. After misuses were identified in the early 21st century alternatives became 
widespread, especially the omega coefficient (ω). Nowadays, α is re-emerging as an acceptable option for reliability 
estimation. Method: A review of the recent academic contributions, journal publication habits and recommendations 
from normative texts was carried out to identify good practices in estimation of internal consistency reliability. Results: 
To guide the analysis, we propose a three-phase decision diagram, which includes item description, fit of the measurement 
model for the test, and choice of the reliability coefficient for test score(s). We also provide recommendations on the use 
of R, Jamovi, JASP, Mplus, SPSS and Stata software to perform the analysis. Conclusions: Both α and ω are suitable 
for items with approximately normal distributions and approximately unidimensional and congeneric measures without 
extreme factor loadings. When items show non-normal distributions, strong specific components, or correlated errors, 
variants of ω are more appropriate. Some require specific data gathering designs. On a practical level we recommend 
a critical approach when using the software.
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The use of questionnaires or test to score individuals on a 
construct or latent variable is common in social and health sciences 
(test hereafter). Often, the test score is defined as the sum or the 
average of each person’s responses to the test items and inferences 
about the construct must be based on sound psychometric properties 
of that score. Among other, evidence of test score reliability 
should be provided as stated in the standard 2.3 in Standards for 
Educational and Psychological Testing (American Educational 
Research Association [AERA] et al., 2014). One way to provide 
this evidence is to calculate internal consistency reliability, which 
is the focus of this paper.

The internal consistency reliability of a test score is based on 
the degree of association between the item responses obtained on a 
single administration of the test to a group of persons. The calculus 
is very simple in an idealised measurement model, in which all 
items assess a single construct (unidimensionality) with the same 
discriminating capacity (essentially tau-equivalent measures re-
flected in equal factor loadings). Moreover, measurement errors, 
considered present in all assessments, are random and unrelated 
(independent errors). On the other hand, the persons assessed 
conform a group with appreciable individual differences in the 
construct but homogeneous with respect to other characteristics. 
Non missing responses to a long test composed by homogeneously 
formatted items obtained from a big sample would bring this ideal 
scenario to completion.

In realistic settings, measurement models are more complex. 
Test items may measure different constructs (multidimensionality), 
or measure the same main construct, reflected in a general factor, 
with some of the items grouped into secondary factors or showing 
correlated errors (essential unidimensionality; e.g., due to similarly 
worded items or to items that, in addition to the main dimension, 
measure other minor dimensions). Moreover, items usually show 
different discrimination capacity (congeneric measures reflected 
in different factor loadings) and may show specific variance 
not shared with other items and not assimilable to measurement 
error (e.g., items evaluating different facets of a single construct). 
Furthermore, persons assessed may display other characteristics 
inducing heterogeneity or may even pertain to well-defined groups 
or classes. In front of any of these complexities, the ideal scenario 
described above is no longer realistic, not to talk about missing 
data, short test length or small sample size.

The best way to accommodate the estimation of reliability to 
realistic settings has been a matter of intense debate since the end 
of the last century. To set the debate, the following few paragraphs 
outline the basic concepts of measurement theory posited by three 
theories underpinning the calculation of an internal consistency 
coefficient.

According to Classical Test Theory (CTT; Lord & Novick, 
1968; see also Muñiz, 2018; Sijtsma & Pfadt, 2021), people’s 
responses to the test items are expected to correctly reflect 
individual differences in the construct by producing variability 
in the scores. This between-person variability is the focus of the 
measurement and is referred to as systematic or true variance. The 
responses of individuals will also depend on many other minor 
factors present in the assessment, such as fatigue or motivation, 
which are considered to produce unpredictable variability referred 
to as error. If the item errors are independent of each other and 

independent of the true score, the total variance of the item sum 
or average is the sum of the systematic variance plus the error 
variance. Reliability coefficients are intended to quantify the 
proportion of systematic variance present in the total variance and 
therefore take values between 0 and 1, with high but not extreme 
values (not close to one) being preferable. 

The most widely used estimate of internal consistency reliability 
is Cronbach’s alpha coefficient (α), formulated by Cronbach (1951), 
among other authors, in the framework of CTT (Gulliksen, 1950) 
under the ideal scenario depicted above: unidimensional, essentia-
lly tau-equivalent measures with independent errors. Several equi-
valent formulas can be used to compute α, but in essence it is a ratio 
between the systematic variance and the total variance.

In the numerator, the average of covariances between items 
quantifies the systematic variance. In the denominator, the sum of 
elements of the variance-covariance matrix of items quantifies the 
total variance. When the total score is the item sum (or average) 
and data are close to the idealised scenario described above, the 
resulting ratio is a good estimate of the proportion of systematic 
variance present in the observed score variance.

Coefficient α is also a particular case of the intra-class 
correlation coefficients derived from the Generalizability Theory 
(GT; Cronbach et al., 1963, see also Brennan, 2001). The main 
objective of GT is to disentangle identifiable sources of error that 
contribute to the error variance in CTT. In this case, different 
measures of reliability are derived from random effects repeated 
measures ANOVA. Among the best known intra-class correlation 
coefficients, the consistency coefficient for average measures 
equals α. Based on covariation between repeated measures should 
not be confounded with the absolute agreement coefficient for 
average measures which includes the additional requirement of 
equal means between repeated measures. 

In addition, internal consistency reliability can also be derived 
from Factor Analysis (FA; Thurstone, 1947; see also Brown, 2015; 
Ferrando et al., 2022). If the items measure a single factor with 
uncorrelated errors, item responses can be explained by a common 
part (or factor loading) plus a unique part (or uniqueness). Assuming 
standardised factor scores, McDonald (1999) defined the omega 
coefficient (ω) as the ratio between the common variance or the 
square of the sum of the factor loadings, and the total variance 
or the square of the sum of the factor loadings plus the sum of 
the uniquenesses. This coefficient has also been referred to as the 
composite reliability or reliability of a composite score (Raykov, 
1997a), ωtotal (Revelle & Zinbarg, 2009) and ωu (Flora, 2020).

Finally, the FA and the CTT measurement models are equivalent 
when factor loadings are assimilated with the true variance and 
uniquenesses are assimilated with the error variance (e.g., Green 
& Yang, 2015). Then, α is a particular case of ω obtained in uni-
dimensional data with uncorrelated errors and equal factor loadings 
for all items (essentially tau-equivalent measures). On the other 
hand, unidimensional data with uncorrelated errors and different 
factor loadings for some items (congeneric measures), will provide 
a value of α lower than that of ω. Both values, α and ω are equal 
to or lower than the population reliability, and thus both are lower 
bounds of reliability except for sampling variability. Because both 
coefficients are estimates based on samples, their values must be 
accompanied by confidence intervals (Oosterwijk, et al., 2019). 
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At the end of the 20th century, α had no clear competence as 
an estimator of reliability, although misuses were already being 
reported (e.g., Cortina, 1993; Schmitt, 1996). From then on, a lively 
debate about the best estimator of internal consistency reliability 
has been growing. We will present the corners of the debate related 
to the methodological research, the publication habits of scientific 
journals, and the position of normative institutions.

In the first decade of the 21st century, a lot of methodological 
research was devoted to identifying and disseminating alternatives 
for α as better (lower-bound) reliability estimators. A first group 
of specialists advocated in favour of coefficients derived from 
FA such as ω (Green & Yang, 2009; Raykov, 1997a; Yang & 
Green, 2011), others argued in favour of coefficients not based 
on a specific measurement model, as the coefficient glb (greatest 
lower bound; Sijtsma, 2009), while a third group argued the use 
of several coefficients to express different aspects of internal con-
sistency reliability (Bentler, 2009; Zinbarg et al., 2005). Later, the 
work of McNeish (2018) published in the journal Psychological 
Methods, advocated the use of several coefficients discouraging 
explicitly α. Meanwhile, simulation studies have shifted the 
debate from the best lower bound estimate to the most accurate 
estimate of the population reliability. No appreciable differences in 
accuracy between α and ω have been reported for a large number 
of measurement models (e.g., Edwards et al., 2021; Gu et al., 2013; 
Raykov & Marcoulides, 2015). Additionally, some coefficients 
not based on a measurement model have shown unacceptable 
behaviour when tested for accuracy in simulation studies (Edwards 
et al., 2021; Sijtsma & Pfadt, 2021). Lastly, the coefficient ω has 
been criticised due to the large number of intermediate decisions 
needed to obtain it (Davenport et al., 2016) and for the fact that 
ω does not refer to a single indicator but to a whole family of 
coefficients, which may difficult comparison between studies 
(Scherer & Teo, 2020; Viladrich et al., 2017). Based on some of 
these reasons, a growing number of voices is calling for a return to 
α, even coming from authors who had previously advocated other 
alternatives (Raykov et al., 2022; Sijtsma & Pfadt, 2021). Other 
positions consider that the use of α or other coefficients should 
depend on the fulfilment of their underlying assumptions (Green 
& Yang, 2015; Raykov & Marcoulides, 2016; Savalei & Reise, 
2019; Viladrich et al., 2017). In addition, the joint publication of 
α and other alternative coefficient(s) has been proposed as a good 
practice (e.g. Bentler, 2021; Revelle & Condon, 2019).

This debate among scholars has been ambiguously reflected 
in the scientific journal publication habits. Flake et al. (2017) 
analysed 301 papers and found that the 73% of them reported 
α. Some explanations were provided by the survey conducted 
by Hoekstra et al., (2019) of 664 researchers who published α 
in relevant journals in different fields. Although 88% reported 
knowing alternatives to α, 74% said they report α because that is 
standard practice in their field, 53% continue to report it because 
they believe they will be required to do so by the journal or the 
review process, and 43% said it is the coefficient they were taught 
to calculate during their scientific training. 

Looking for extreme positions in reporting habits, we have 
reviewed the scientific papers citing the aforementioned McNeish’s 
(2018) work. Due to his position discouraging the use of α we 
expected that these papers would mainly report other coefficients. 

At the time of writing our text (September 2022) we found 696 
citing papers of McNeish’s work in Web of Science. Among the 
598 that published empirical data, 46 (13.2%) reported only ω; 
207 (34.6%) reported α and another coefficient, generally ω; 251 
(42.0%) reported only α; 21 (3.5%) reported ω and a coefficient 
other than α; 28 (4.7%) a coefficient other than ω or α; and 12 
(2.0%) did not report any reliability coefficient. That is, almost 
the half of the McNeish’s work citing papers reported despite 
McNeish’s advice against it. 

From normative positions, American Psychological Asso-
ciation’s publication manual, indirectly recommended to report 
α up to its version 6. In version 7 (American Psychological 
Association, 2020), it is explicitly promoted to report the vali-
dation of the measurement model prior to the calculus of the 
reliability coefficient according to Appelbaum et al., (2018) and 
Slaney et al., (2009) recommendations. Moreover, the possibility 
of reporting α or other coefficients such as ω, jointly or separately, 
has been adopted by European test evaluation commissions (e.g., 
CET-R [The Questionnaire for the Assessment of Tests Revised 
sponsored by the Test Commission of The National Association 
of Spanish Psychology], Hernández et al., 2016; EFPA model, 
[European Federation of Psychologists’ Associations], Evers et 
al., 2013; COTAN model [Dutch Committee on Testing Affairs], 
Evers et al., 2015). Also, in the methods for systematic reviews 
and meta-analyses, which can be considered normative for primary 
studies, the uncritical use of α is discouraged. The prior analysis of 
the measurement model (Prinsen et al., 2018) and the publication 
of the reliability coefficient best suited to the characteristics of the 
data (Sánchez-Meca et al., 2021) are promoted instead. 

Thus, the debate seems to have been settled in favour of α and 
ω over coefficients not based on measurement models. A major 
advantage of ω would be its adaptability at first sight to more 
sophisticated measurement models derived from FA, while the 
greatest advantage of α would be its simplicity. However, whether 
α or other coefficient is used, the choice of coefficient(s) should not 
be unreflective but justified.

In light of what appears to be a new opportunity for α, we set 
out to review our guidelines for using the more adequate reliability 
coefficient in different analytical scenarios (Viladrich et al., 2017). 
In that paper we distinguished the coefficient to be used according 
to the nature of the data and the measurement model. We maintain 
our alignment with the opinion that the choice of a reliability 
coefficient depends on the measurement model that best fits the 
data (see also Green & Yang, 2015; Raykov & Marcoulides, 2016; 
Savalei & Reise, 2019). Conversely, our position differs from those 
who have recently defended the idea that should routinely replace 
α as an indicator of internal consistency reliability (e.g., Flora, 
2020; Goodboy & Martin, 2020; Komperda et al., 2018). Our work 
also differs from those who suggest that the adequate coefficient 
can be routinely obtained using point-and-click software (e.g., 
Kalkbrenner, 2021).

Thus, the first aim of this paper is to review criteria for decision-
making when estimating internal consistency reliability. For that 
reason, we examine the research showing when is adequate and 
what are the best alternatives, especially ω, when α is not adequate. 
In our view, the choice of the reliability coefficient is the outcome 
of several successive decisions that we summarise in a flow chart 
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structured in three analytical steps. The second aim of this paper is 
to facilitate the application of these criteria when using statistical 
software for reliability estimation. To accomplish that, we will 
compare some of the most common or easy-to-use computer 
software for conducting the proposed three analytical steps ending 
with an adequate estimation of the reliability coefficients. Finally, 
some conclusions and recommendations will be derived with 
importance for data analysts and scientific paper reviewers.

When and Why to use α and/or ω

The recommended uses of α and ω are based on different 
aspects. These aspects are related to the nature of the variables or 
person groups, the factor loadings, the dimensionality of the test 
or the appropriate measurement models to describe the responses. 
The following is a review of the most recent literature on whether 
or not each of these characteristics conditions the use of α or ω.

Continuity and normality

In the ideal scenario α can be used to estimate the reliability of 
the sum or average of responses on a continuous scale. Considering 
that continuity is not a requirement, Chalmers (2018) proposes to 
use α also if the response scales are ordinal polytomous or even 
dichotomous. In contrast, the results of Xiao and Hau (2022) show 
that in that case the biases may be high. Moreover, it should be 
kept in mind that with ordinal response scales, the measurement 
model is often constructed invoking continuous latent variables 
for which discretised responses have been observed (Zumbo & 
Kroc, 2019). For this reason, when faced with ordinal response 
formats, some authors choose to use the ordinal versions of α u 
ω in which reliability is calculated in the metric of the continuous 
latent variables (Elosua & Zumbo, 2008; Gadermann et al., 2012; 
Zumbo et al., 2007) and others opt for the non-linear or categorical 
version of ω (ωcategorical) in which the reliability coefficient is 
calculated in the metric of the discrete observed variables (Green & 
Yang, 2009). Because of its metric, and as we argued in a previous 
work (Viladrich et al., 2017), when the response scale is ordinal, 
in the present paper we are inclined to use either Cronbach’s α or 
ωcategorical. 

Moreover, in principle, the shape of the distribution of the 
responses of test items and, particularly, normality, is not a 
necessary assumption for α (Raykov & Marcoulides, 2019). 
However, it is known that the distribution of items can affect the 
estimation of covariances and correlations between them and 
thus the estimation of α. While in presence of positive kurtosis α 
underestimates reliability, in presence of negative kurtosis it may 
slightly overestimate reliability, biases attenuated in large samples 
of for example of 1000 cases (Olvera et al., 2020). Additionally, 
in presence of item skewness the estimation of reliability is 
biased towards low values (Kim et al., 2020). Even worse, if the 
departure from normality is remarkable, as happens with ceiling 
or floor effects, all the results related to internal consistency 
reliability are affected, from the matrix of polychoric correlations 
(Foldnes & Grønneberg, 2020), through the determination of the 
test dimensionality (Christensen et al., 2022) to the calculation of 
ω (Yang & Xia, 2019). Specific coefficients have been developed 
to deal with these cases (Foster, 2021), but as the author himself 

acknowledges, their use is limited because they are based on 
very demanding assumptions regarding the measurement model, 
and its efficiency in comparison with α and ω still needs further 
research. At this very moment, it would be safer to opt for a non-
linear measurement model based on item response theory (IRT) 
and deriving the reliability coefficient assimilable to those of 
internal consistency derived from the TCT (e.g., Culpepper, 2013; 
Kim & Feldt, 2010; Raykov et al., 2010). On the other hand, if 
the irregularities in the distribution are due to low endorsement of 
some response categories, use can be made of the classical solution 
of grouping categories before starting the reliability analysis (e.g., 
Agresti, 1996; DiStefano et al., 2020).

Homogeneous groups

Regarding the homogeneity of respondents, when populations 
are structured in heterogeneous classes, parameter estimates 
may be biased and their standard errors incorrect, and it is 
therefore recommended to identify the classes and calculate the 
reliability separately in each of them (Raykov et al., 2019). If the 
heterogeneity is due to a multilevel structure, Lai (2021) proposes 
using modifications of α and ω, although their behaviour in real 
data has not been sufficiently studied.

Homogeneous factor loadings

The diversity of factor loadings is the main source of difference 
between α and ω. Non homogenous factor loadings could 
derive from item content or simply from sizeable differences 
between item variances (Graham, 2006). If the measurement 
model is unifactorial with uncorrelated errors, the coefficient α 
underestimates reliability even if only one factor loading is largely 
different from the others (Raykov, 1997b), especially when the 
number of items is small. However, when factor loadings are .70 
on average and discrepancies between factor loadings are below 
.20 in absolute value, the differences between α and ω are minimal 
(Raykov & Marcoulides, 2015). Recent simulation studies 
published by Edwards et al. (2021) suggest that even with more 
extreme discrepancies, for example, with factor loadings between 
.20 and .80 in samples of 100 or more cases, the underestimates are 
slight, averaging .02 for 12 items and .04 for 6 items. Even a more 
radical position can be seen in Raykov et al. (2022).

Additionally, the differences between the two coefficients are 
generally reflected from the third decimal place onwards if data 
was derived from a population reliability reasonable for practical 
purposes (close to .80). Larger differences are obtained only when 
population reliability is extremely low. Furthermore, Deng and 
Chan (2017), and Hussey and Hughes (2020), analysing real data, 
report differences between α and ω in the third decimal place. That 
is, despite calls of caution related to different factor loadings, in 
most cases there would be no practical difference between using 
one coefficient or the other.

Multidimensional tests

Finally, the coefficients α and ω are not suitable for 
multidimensional tests measuring different constructs that do not 
share one general factor. Nevertheless, once the different factors 
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have been identified, these coefficients can be calculated for each 
subscale separately (Bentler, 2021; Flora, 2020; Prinsen et al., 
2018; Sijtsma & Pfadt, 2021).

Measurement model

The main concerns for using α and ω, arise when (a) the unique 
variance of some items is not assimilable to measurement error, (b) 
some item errors are correlated, or (c) minor factors are identified 
in addition to the general factor. Put in other words, when the FA 
results violate the CTT assumptions, and the two models are no 
longer equivalent, not only α, but also ω, are in doubt.

The first scenario is common in tests designed to measure broad 
concepts with few items, such as short personality tests. Item content 
specificity, which will reflect in unshared variance or uniqueness, 
is necessary to achieve the measurement of the construct and 
therefore cannot be assimilated to measurement error. In this event, 
both α and ω will markedly underestimate the reliability of the test 
to the extent of invalidate the classical conclusion that reliability is 
the upper limit of validity (McCrae, 2015).

Even more concerning is the presence of correlated errors 
between items or of minor factors. They are frequent in tests and 
can be due to similarities in the meaning of some items, order 
effects, response format effects (e.g., Bandalos, 2021; Weijters et 
al., 2009) or the influence of specific identifiable factors beyond 
the common factor (Rodriguez et al., 2016a, 2016b). In these 
scenarios, the coefficients α and ω may sometimes underestimate 
and sometimes overestimate the population value of reliability, 
thus losing the much appreciated guarantee of being conservative 
estimates of reliability (Bentler, 2021; Raykov, 2001). 

Three types of solutions have been proposed to deal with 
these concerns. All of them require judgment by the researcher. 
One option is to consider that the reliability of the construct 
refers only to the common variance between all items. The other 
variance components, including the specific variance and the 
residual covariances or group factors, will be considered as part 
of the measurement error and, consequently, the calculation of the 
internal consistency coefficients will be corrected (reduced) by 
including them only in the denominator. If this course of action 
is taken, formulas such as ωhierarchical (Zinbarg et al., 2005) or ω 
corrected for correlated errors (Raykov, 2004) will be useful. 
Note that the factor loadings for calculations should be derived 
from a FA with the appropriate measurement model, for example 
the bifactor model with one common factor and some group 
factors, or the one-factor model with some correlated errors.

Another option is to consider all shared variance as true 
variance, including the common variance and the covariances bet-
ween some items or group factors. Consequently, them both will 
be included to the numerator and the denominator of the internal 
consistency reliability coefficient. If this option is accepted, the 
formula for estimating internal consistency reliability would be ω 
with common and group factor loadings obtained from a bifactor 
model (Revelle & Zinbarg, 2009; Zinbarg et al., 2005) or even α. 

A third option is to differentiate these variance components 
by measuring predictors for variance and/or residual covarian-
ces. Variance accounted for by these covariates will turn into 
explained variance separated from random measurement 

error. This may be achieved in several ways. In cross-sectional 
designs, Bentler (2017) propose to measure auxiliary variables. 
In longitudinal designs a preferrable approach would be using 
time-series concepts such as autocorrelated errors (Green & 
Hershberger, 2000) or identifying item-specific factors based on 
repeated measures (Raykov, 2007). Anyhow, if the researcher 
wants to differentiate variance components, the main decision 
no longer reduces to the choice of the best formula for reliability 
estimation but encompasses the data collection design recording 
either auxiliary variables in a cross-sectional design or repeated 
measures in a longitudinal design. The reliability coefficient 
will be calculated as ω corrected (increased) by including the 
specific predicted part as true variance in both the numerator 
and denominator (ω+ or specificity enhanced ω according to 
Bentler, 2017; ωi according to Raykov, 2007) or by including 
the variability attributable to autocorrelated errors only in the 
denominator (Green & Hershberger, 2000).

As a summary of this section, Table 1 shows the reliability 
coefficients α or ω that we recommend depending on the 
definition of true variance (rows) and quantitative (column 3) 
or ordinal (column 4) nature of the data. The recommendations 
are applicable to items with homogenous format, answered on a 
scale of ordered categories, dichotomous or polytomous, for the 
estimation of the reliability of the sum or average of the observed 
item responses, not of the hypothetical underlying continuous 
responses nor the factor scores. 

The first setting is one of the most common: the analysis of 
items measuring a single factor, even with factor loadings not 
particularly homogeneous. In this situation, the use of α or ω 
for quantitative or categorical data would be perfectly justified, 
resulting in very similar values. In this setting, if some factor 
loadings show extreme values, the course of action is still a 
matter of debate (Edwards et al., 2021; Raykov et al., 2022). The 
results obtained by Edwards et al. (2021) in a simulation study 
discourage the use of α with factor loadings out of the interval 
0.2 – 0.8, although we did not find equivalent studies for ordinal 
data at present. All things considered, we think that the more 
conservative proposal would be the use of ω.

The settings two to five provide solutions for other ways to 
conceive the true variance. In the second setting, where some 
minor factors are found due to correlations between items not 
explained by the general factor (essential unidimensionality) and 
this variability is considered as true variance, ω should be derived 
from a bifactor model considering common and group variance 
as true variance. As can be seen in Table 1, this coefficient is 
developed for quantitative data and not yet for ordinal data. In 
the third setting we deal with the other option in front of essential 
unidimensionality, where the group variance is considered error 
variance. In this case, we consider it more appropriate to use 
the ωhierarchical or ω corrected for correlated errors for quatitative 
data and ωh-cat for ordinal data. The fourth setting deals with 
items which specificity is considered as true variance within a 
unidimensional model. In this case we think that ωi is the correct 
option for estimating reliability, although this will only be 
possible if it has been foreseen in the data collection design. Once 
again, as far as we know, this type of coefficient has not been 
developed for ordinal data.
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Table 1.
Recommended Use of α and ω Coefficients to Obtain Internal Consistency Reliability in Different Settings.

Settings True variance Recommended coefficient for reliability of the item sum or average
Quantitative: Five or more response categories and 

linear relationship with normal errors
Ordinal: Four or less response categories 

and linearizable relationship

1 One-dimensional model (true variance = common variance) • α (Cronbach, 1951)**
• ω (McDonald, 1999)

• α (Cronbach, 1951)**
• ωcategorical (Green y Yang, 2009) 

2 Essentially one-dimensional model (true variance = common 
variance + minor factors variance)

• α (Cronbach, 1951)
• ωtotal derived from bifactor (Zinbarg et al., 2005)

• α (Cronbach, 1951)
• Categorical version not developed yet

3 Essentially one-dimensional model (true variance = common 
variance)

• ωhierarchical (Zinbarg et al., 2005)
• ωcorrected for correlated errors (Raykov, 2004)

• ωh-cat (Flora, 2020)

4 One-dimensional model (true variance = common variance + 
specific variance)

• ωi (Raykov, 2007) • Categorical versión not developed yet

Note. α = Cronbach’s alpha; ω = omega (also ωu, ωtotal, or composite reliability); ωi = specificity-corrected omega (also ω+ or specificity enhanced); ωh-cat = omega hierarchical 
for categorical data. ** In setting 1, simulation studies with quantitative data favour the use of omega with extreme factor loadings. Equivalent studies for categorical data are not 
developed yet.

The Choice of a Reliability Coefficient: A Three-Stage Analysis

From what was elaborated up to this point it should have 
become clear that we discourage the analysis of the internal 
consistency reliability of a test by choosing the default instruction 
in the researcher’s preferred software. On the contrary, we share 
with other works the idea that this analysis involves a complex 
but necessary process (Liddell & Kruschke, 2018; Savalei & 
Reise, 2019). We structure this process in three phases in which 
decisions are made successively: (1) the statistical description of 
the items; (2) the fit of the measurement model for the test and 
(3) the estimation of the internal consistency reliability of the test 
score(s). The focus of this paper is on the third phase, but, as we 
have seen, the reasoned choice of the reliability coefficient in this 
third phase depends on the decisions made in the first two phases. 
Therefore, some guidelines for addressing the first two phases are 
also given below. The three proposed phases are depicted in Figure 
1. The vertical path highlighted and shaded in the left side of Figure 
1 depicts the analysis that leads to the calculation of the coefficient 
as recommended in the first line of Table 1, the most common 
scenario. The more complex alternatives discussed through this 
paper are depicted in lighter colour and without shading. 

Phase 1: Statistical Description of the Items

The aim of this first phase is to gain knowledge about the 
distribution of item responses, to detect the possible presence of 
missing data, and to inspect the subgroups of persons and items for 
possible patterns that may illuminate the modelling to be carried 
out in the next phase. 

Phase 1a: Data Completeness

The univariate description of the items provides information about 
the response distribution including possible missing values. If data 
are complete, it is possible continue with the analysis as planned. If 
some missing values are detected, it is recommended to use multiple 
imputation whether the data are analysed as quantitative (Ferrando 
et al., 2022) or as ordinal (Shi et al., 2020). Other possibilities are to 
use full information maximum likelihood estimation (FIML) during 
Phase 2 or to further refine the analysis according to specialised texts 
recommendations (e.g., Enders, 2010). All of these are better options 

than to eliminate cases with missing data from the analysis (listwise), 
or treat missing data based on bivariate information (pairwise) 
which is the default in some software. It is quite a different matter to 
observe categories with low endorsement or no endorsement at all. 
There is no way to infer this kind of non-observed responses and that 
may pose a problem for further analysis. To further analyse these 
data as categorical or ordinal the researcher may choose to collapse 
some nearby categories (e.g., Agresti, 1996; DiStefano et al., 2020). 
In previous phases of research, if the probability of endorsement of 
some response categories is very low in the population, you may 
consider gathering a very large sample of examinees or redesigning 
the response scale.

Phase 1b: Homogeneity of Persons and Items

Another task will be to assess whether the data come from a 
homogeneous population. If so, we can proceed with the analysis 
as planned. On the other hand, if the data collection design has 
been multilevel, it is advisable to deal with heterogeneity using 
multilevel analysis techniques (Cho et al., 2019; Hox et al., 2018). 
If the heterogeneity stems from data coming from different po-
pulations, one option is to continue the analysis for each group 
separately. If the underlying populations are not known, they can 
be identified by cluster analysis or even by latent class analysis as 
proposed by Raykov et al. (2019).

In addition, it is useful to inspect the homogeneity of the 
relationships between items. Heterogeneous relationships an-
ticipate possible deviations from unidimensionality that will 
surface in the formal analysis in Phase 2. For quantitative data, 
the variance-covariance matrix (or Pearson correlation matrix) 
can be examined. For categorical or ordinal data, the tetrachoric 
(two response categories) or polychoric (more than two response 
categories) correlation matrix would be a better option. Visual 
inspection of these matrices may suffice if the number of items 
is moderate. More generally, the inspection can be conducted 
using multivariate statistical techniques such as exploratory factor 
analysis (EFA; e.g., Lloret-Segura et al., 2014), psychometric 
network analysis (e.g., Golino & Epskamp, 2017; see for practical 
application Pons et al., 2017), or multiple correspondence analysis 
(e.g., Greenacre, 2017). 

The result of Phase 1 is a database for each population on which 
the test measurement model will be formally studied during Phase 2.
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Figure 1.
Decision Making Diagram for Choosing a Reliability Coefficient.
Note: IRT = Item response theory; FA = Factor analysis; ML = Maximum likelihood estimator; ULS = Unweigthed least squares estimator; * = use ULS in small samples, var-cov = 
Variance-covariance; FIML = Full information maximum likelihood estimator; MLR = Robust maximum likelihood estimator; WLSMV = Weighted least squares mean and variance 
corrected estimator; ULSMV = unweighted least squares mean and variance corrected estimator; tetra/pol = tetrachoric or polychoric correlations; Settings are defined in Table 1; α = 
Cronbach’s alpha; ω =omega (also ωu, ωtotal, or composite reliability); ωi = omega; ωi = specificity-corrected omega (also ω+ or specificity enhanced ); ωh-cat = omega hierarchical 
for categorical data. Coefficients that are separated by a comma may be reported together or one may be chosen in a reasoned manner. Between brackets are presented coefficients for 
ordinal data; ? represents coefficients that are currently not developed.
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Phase 2: Analysis of the Measurement Model of the Test

The main objectives of this phase are to determine the 
dimensionality of the test as α and ω are only adequate for 
unidimensional measures, and to estimate the parameters involved 
in the calculation of ω.

Phase 2a: Specification of the Measurement Model

The first step is to specify a reasonable relationship between 
the items and the latent variables or factors. If the relationships are 
assumed to be linear and the residuals normally distributed, limited 
information estimation techniques can be used and the analysis in 
Phase 2b is simplified. On the other hand, if the relationships are 
specified as nonlinear, full information estimation techniques will 
be appropriate, the same techniques mentioned above for dealing 
with missing data.

If response categories are five or more it is reasonable to treat 
items as quantitative and linearly related to the latent variables 
as long as the responses to the items follow a normal distribution 
(Rhemtulla et al., 2012). In fact, they can be treated as normal if the 
absolute values of skewness and kurtosis are not greater than 1 (e.g., 
Ferrando et al., 2022; Lloret-Segura et al., 2014). When moderate 
deviations from normality are found, small corrections will suffice 
and will be discussed in Phase 2b. Otherwise, if extreme deviations 
are detected, such as those caused by floor or ceiling effects, a 
radical change of strategy should be considered. In this case, it will 
be advisable invoking other distributions of the residuals, such as 
the Poisson model (e.g., Foster, 2020; Muthén et al., 2016, cap. 7) or 
turn to non-linear models as described in the next paragraph.

In contrast, if items are answered in a response scale of four or 
less categories, a linear relationship with the latent variables is no 
longer reasonable and therefore it is preferable to treat the data as 
categorical or ordinal (Rhemtulla et al., 2012). The relationship 
can take several forms, but in the common case that researchers 
are interested in a two-parameter model (item difficulty and item 
discrimination), or the graded response model (difficulty of categories 
and item discrimination), then the relationships are linearizable 
by calculating polychoric or tetrachoric corre-lation coefficients. 
Otherwise, if researchers are interested in more complex models, for 
example, with more parameters, the alternative are the non-linear 
IRT models (Culpepper, 2013; Kim & Feldt, 2010). 

A good practice is to specify all measurement models 
compatible with the theory underlying the construct, analyse 
them one after the other and choose the one that best fits the data 
and the purposes for which the test is to be used. When the test 
is intended to measure several constructs or factors, a typical 
sequence of nested models to check is (1) a flexible model allowing 
item cross-loadings between factors, and (2) a restricted model 
where factors are congeneric measures with no cross-loadings. 
If the test measures only one construct, the sequence is reduced 
to step (2) and perhaps to checking (3) the model of essentially 
tau-equivalent measures. On the other hand, if heterogeneity is 
suspected in the relationships between items of one construct, a 
reasonable sequence of models to check would be (1) a bi-factor 
model, (2) the congeneric measurement model and, perhaps, (3) 
the essentially tau-equivalent measurement model. 

Phase 2b: Parameter Estimation and Model Fit

For parameter estimation, either item FA or non-linear IRT 
models can be used provided that data from large samples are 
available. Many cases can be solved through FA using either 
confirmatory (CFA) or exploratory (EFA) techniques (e.g., Bovaird 
& Koziol, 2012). In the simplest case, if the data are quantitative 
with item responses normally distributed, the use of the maximum 
likelihood (ML) estimator is recommended. As an alternative for 
slight deviations from normality, the use of the robust maximum 
likelihood estimator (MLR) is preferable. With ordinal data and 
a two-parameter model or a graded response model, the robust 
weighted least squares estimator with a χ2 statistic adjusted for 
mean and variance (WLSMV) is considered a suitable option. 
The general solution of estimating the parameters through full 
information maximum likelihood (FIML) can always be chosen at 
a higher computational cost.

If the sample size is small relative to the number of items, a 
preferable option for FA for quantitative data may be the unweighted 
least squares estimator (ULS; Ferrando et al., 2022) or for ordinal 
data the unweighted least squares with a χ2 statistic adjusted for mean 
and variance (ULSMV; Savalei & Rhemtulla, 2013). The number of 
cases that is considered a small sample size is a difficult topic but, as 
a guide, those analysed in the literature are in the order of 100 to 200 
cases (e.g., Forero et al., 2009; Savalei & Rhemtulla, 2013).

The output of Phase 2 is the measurement model of the test 
that (1) is theoretically sound, (2) displays good fit to the data, 
and (3) displays better fit than alternative models compatible with 
theory. Typically, the output will be either a unidimensional model, 
an essentially undimensional model or a multidimensional model.

Phase 3: Estimation of the Internal Consistency Reliability of 
the Score(s)

As seen in the previous sections, the internal consistency 
reliability of the score of a test with unidimensional structure 
and specificity assimilable to measurement error can be obtained 
either using α or ω, that will provide close values. Researchers 
may also choose to report both types of coefficients. Conversely, 
if specificity is considered as true variance, the coefficient ωi will 
better reflect the reliability of the test score.

On the other hand, if the measurement model is multidimensional, 
α and/or ω can be calculated for each factor separately. When the 
model is essentially unidimensional our recommendation would 
be to clarify whether to consider the entire non common part as 
measurement error, which would be more consistent with reporting 
the coefficient ωhierarchical, or whether to consider minor factors as 
true variance which would be more consistent with reporting ω or 
even α. It may also be useful to report both types of coefficients 
(e.g., Green & Yang, 2015). 

Finally, in all cases, it is good practice to report the confidence 
interval of the chosen internal consistency coefficient(s) or to report 
the Bayesian estimation of these coefficients (Pfadt et al., 2022). 
If the researcher chooses alternative coefficients that are beyond 
the objectives of this work, we recommend consulting specialized 
literature. This would happen, for example, with the coefficients 
derived from IRT or multilevel analysis, among other (Cho, 2022).
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Computer Software for Internal Consistency Reliability 
Estimation

In this section, we present the current possibilities of widely used 
software to perform the three-stage analysis outlined above. In most 
cases, the analysis can be fully developed using one or, at most, two 
of them. We present open-source software R, Jamovi and JASP, and 
commercial software Mplus, SPSS and Stata. Jamovi, JASP, SPSS 
and Stata are menu-driven and can be complemented with syntax, 
while syntax is always required in R and Mplus. Our comments 
below refer to the analyses that can be managed through menus 
or syntax, explicitly ignoring the possibility of programming new 
functions. Figure 2 summarises this information. 

R (R Core Team, 2021). The data analyst can perform all the 
analyses we have suggested for each of the three phases (i.e., 
descriptive analysis of the items, fit of the measurement model of the 
test, and estimation of internal consistency reliability of test scores 
except coefficient ωi). The most convenient way to obtain results in R 
is to adapt a ready-made syntax. The work of Viladrich et al. (2017) 

presents a guide and the syntax necessary to carry out Phase 2 and 
Phase 3 for unidimensional tests. Point and interval estimate of the 
omega coefficient are derived from CFA. Syntax of point and interval 
estimates for alpha coefficient is also provided. Complementarily, 
Viladrich and Angulo-Brunet (2019) presents the syntax for Phase 
2 and Phase 3 to obtain ωhierarchical based on a confirmatory bifactor 
model. In all these syntaxes the reliability function, which is 
deprecated, can be replaced by the updated compRelSEM function. 
As we have already said, if a multidimensional model is analysed, 
the reliability of each factor can be obtained separately and thus, 
the procedure proposed in Viladrich et al. (2017) for unidimensional 
tests can be applied to each factor. In addition to the confirmatory 
analyses, the package psych (Revelle, 2022; Revelle & Condon, 
2019) allows to obtain α, ω and ωhierarchical based on the exploratory 
bifactor model, which by default assumes three minor factors. This 
exploratory option is not advisable (Savalei & Reise, 2019) due to 
the fact that it can lead to reliability overestimation based on non-
plausible model results. To the best of our knowledge, no R syntax 
for ωi has been published so far.

R Jamovi

Phase 1: Data description

Phase II - Measurement model CFA

Phase III: reliability coefficient

Model

Estimator

Descriptives and frequencies
Pearson correlations

Tetracoric/polychoric correlations
Latent profile analysis

Cluster analysis
Psychological networks

Correspondence analysis
EFA

Congeneric
Correlated errors

Bi-factor
Multidimensional

ML
MLR

WLSMV
ULS

FIML

α
 CI α

ω (EFA)
CI ω (EFA)

ω (CFA)
CI ω (CFA)

ωi
CI ωi

ω hierarchical
CI ω hierarchical

ω categorical
CI ω categorical

JASP Mplus SPSS Stata

Available Not available
Figure 2.
Comparison of the Analytical Possibilities of Software to Complete the Three-stage Analysis for Reliability Estimation.
Note: EFA = Exploratory factor analysis; CFA = Confirmatory factor analysis; ML = Maximum likelihood estimator; MLR = Robust maximum likelihood estimator; WLSMV = 
Weighted least squares mean and variance corrected estimator; ULS = Unweigthed least squares estimator; FIML = Full information maximum likelihood estimator; tetra/pol = 
tetrachoric or polychoric correlations; α = Cronbach’s alpha; ω = omega; ωi = specificity-corrected omega. CI = confidence interval. .
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Jamovi (The Jamovi Project, 2021). All the analyses proposed 
for Phase 1 can be carried out through menus. All the measurement 
models we have dealt with in Phase 2 can be analysed downloading 
the complementary module semlj (Gallucci & Jentschke, 2021) 
which installs the SEM menu. In Phase 3, with the SEM menu, 
you can get α, and the same ω options offered by the R package 
psych nowadays. Some particularities of this module are that it 
does not implement the FIML estimator and that with categorical 
data it calculates the ordinal version of α (Zumbo et al., 2007). 
We discourage the routine use of the pre-installed Factor menu. 
Although it offers CFA and EFA for quantitative data, and the 
reliability analysis option calculates the α and ω coefficients, it 
should be kept in mind that omega in the output is only correct 
for the congeneric unidimensional model, which is the default and 
cannot be assessed or modified by the user.

JASP (JASP Team, 2022). All statistical techniques mentioned 
in Phase 1 except correspondence analysis are available in JASP 
menus. In Phase 2, all measurement models can be tested with the 
Factor menu if an exploratory strategy is chosen or with the SEM 
menu if a confirmatory strategy is prefered. For Phase 3, the menu 
SEM provides point and interval estimation of α and ω. However, 
ω is only correct for the unidimensional model with maximum 
likelihood estimation which is the default and cannot be modified 
by the user.

Mplus (Muthén & Muthén, 2017). This commercial software 
offers the widest range of options for fitting the measurement 
model (Phase 2) and the first descriptive phase is also possible, 
except for multivariate techniques with no latent variables, such 
as cluster analysis, psychological network analysis and multiple 
correspondence analysis. Again, the most convenient option is to 
adapt ready-made syntaxes. Viladrich et al. (2019) provide a guide 
and the syntax for fitting the measurement model and estimating 
the reliability of unidimensional tests using CFA. For bifactor 
confirmatory models, see Viladrich and Angulo-Brunet (2019), for 
bifactor exploratory models see García-Garzón et al. (2020). For 
the computation of ωi see the syntax published by Sideridis et al. 
(2019). At the moment, we have not found published syntax to 
calculate directly ωcategorical in Mplus. Indirect options include copy-
paste output values from Mplus to SAS (Yang & Xia, 2019) or 
export output from Mplus to R using the function mplus2lavaan 
from the package MplusAutomation (Hallquist et al., 2022; syntax 
available in Viladrich et al., 2019).

IBM SPSS (IBM Corp., 2021). All statistical techniques in 
Phase 1 are available through menus except for psychological 
networks and latent class analysis. The extended command 
SPSSINC_HETCOR downloadable from IBM developerWorks 
allows the calculus of tetrachoric and polychoric correlations using 
an R package. Other options include the syntax by Lorenzo-Seva 
and Ferrando (2012; 2015). Measurement models in Phase 2 can 
be fitted using IBM SPSS AMOS (Arbuckle, 2014), an additional 
software for structural equation modelling with a limited number 
of the estimation methods mentioned in Phase 2. For Phase 3, 
the command reliability of the core module provides the point 
estimation of α and, since version 27.0, also of ω for unidimensional 
models which is the default and cannot be modified by the user. As 
an option in the reliability command, point and interval estimation 
of α can be obtained as the intraclass correlation called consistency 
coefficient for average measures.

Stata (StataCorp, 2021). All statistical techniques in the 
descriptive phase are available except for psychological networks. The 
analysis of measurement models is generally performed with FIML 
estimation. In the third phase, Viladrich et al. (2019) provide syntax 
that facilitates the point and interval estimation of the coefficients 
α and ω for unidimensional models, whereas Viladrich and Angulo-
Brunet (2019) provide syntax for bifactor models and ωhierarchical. To 
the best of our knowledge, the syntaxes for the calculation of the 
coefficients ωcategorical and ωi are not available at present.

Discussion

In this paper we have reviewed the current knowledge, 
practices and solutions concerning the estimation of the reliability 
of test scores based on an internal consistency design. The main 
results from our review are presented as a flow-chart aimed to help 
data analysts and paper reviewers. The flow-chart facilitates the 
reasoned choice of the reliability coefficient for scores obtained by 
sum or average of items with dichotomous or polytomous ordered 
category response scales.

Our first conclusion is that the classical α derived from the 
variance-covariance matrix between items performs well in 
most cases. We are more optimistic than Bentler (2021) when he 
concludes on the uses of α by a laconic “That’s nice. But that’s it. 
And it’s not a lot” (p. 866). In our opinion it is quite a lot, at least 
by comparison with the uses of its best positioned competitor ω, 
although it is not enough because neither of the two coefficients 
provide a correct estimation of reliability in all cases. In fact, there 
is not a single coefficient that can do this job in all cases (Cho 
2022; Xiao & Hau, 2022).

We consider it quite a lot due to compelling evidence in 
support of the close performance of α and ω when the data are 
approximately unidimensional the measures are congeneric with 
no extreme factor loadings and samples are large. Either coefficient 
would be correct in this scenario. And both would be incorrect for 
measurement models with correlated errors or items with a strong 
specific component.

Studies comparing α and ω under different conditions show that, 
in many cases, the difference between the two values is minimal. 
In our review we found that the conclusions in favour of ω in 
simulation studies are exaggerated as, under reasonable population 
reliabilities, the difference between the two coefficients reflects 
form the third decimal place onwards. This adds to the Savalei and 
Reise’s (2019) conclusions that McNeish (2018) exaggerated the 
difference between the two coefficients and that the consequences of 
the divergence for practical purposes would be trivial. 

In addition, using ω entails some dangers. The most serious 
stems from the subjective decisions involved when fitting 
the measurement model. Subjectivity can lead to much more 
inadequate results and make replication difficult (Davenport et 
al., 2016; Edwards et al., 2021; Foster, 2021), not to mention the 
bad practice of selecting an atheoretical but statistically fitting 
measurement model obtained from refinement based on the results. 
In our opinion, the best way to deal with this danger is to make all 
stages of the analysis transparent, including the availability of the 
database and the syntax used for the analysis. 

Thus, in front of proposals that only advise the publication of 
some form of ω (e.g. Flora, 2020), we consider that α is appropriate 
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in a wide variety of situations. We see coefficient α as simple to 
calculate, communicate and replicate, and differing from ω to the 
third decimal place in simulation studies, so with practical utility 
without a substantive loss in the rigour of reliability estimation. Let’s 
wait and see if this conclusion is further supported by the replication 
of simulation studies in the future as proposed by Cho (2022).

For now, the most conservative position would be to report α 
and ω, as proposed by Revelle and Condon (2019). The publication 
of α will facilitate direct comparison with other studies (in fact, 
α is still the most reported reliability coefficient). Additionally, 
the publication of ω will provide an estimation based on the 
measurement model. If the difference between the coefficient α 
and ω was relevant, it would be worth discussing the reasons for 
this difference. 

It should also be clearly stated that both coefficients share 
several limitations. To begin with, neither of them is useful for 
estimating the internal consistency reliability of scores derived 
from non-linear measurement models or with residual distributions 
largely departing from normality. For these cases, coefficients 
derived from linearised measurement models such as ωordinal 
(Zumbo et al., 2007) and ωcategorical (Green & Yang, 2009) have 
been dealt with in this text, but researchers should also consider 
coefficients derived from IRT models (Culpepper, 2013; Kim & 
Feldt, 2010) or Bayesian estimation applicable to a wide variety of 
exponential distributions (Foster, 2020, 2021) which have not been 
discussed in this text.

Furthermore, the use of α and ω is limited to the estimation 
of the reliability of scores obtained by item sum or average. The 
generalisation of these coefficients to estimate the reliability 
of factor scores can be seen in Rodriguez et al. (2016b) and in 
Ferrando and Lorenzo-Seva (2016, 2018). These papers address 
an even more important issue, namely the discussion of the 
psychometric use-fulness of reliability coefficients compared 
to other indicators of the quality of factor scores such as factor 
determinacy and the common variance explained by the general 
factor. This is a very relevant practical issue because in popular 
analyses with structural equation models, the measure of latent 
constructs is not obtained by item sum or average, but by factorial 
combination of item responses. In short, although the extreme 
positions of the letters α and ω in the Greek alphabet suggest that 
they are coefficients located at antipodes, evidence show that they 
solve quite the same psychometric issues. 

Another important point for practical purposes is that there 
are no shortcuts to calculate α and ω. Indeed, one idea that has 
survived the discussion of coefficients over the last few decades 
is that whatever coefficient is used, the estimation of the internal 
consistency reliability comes after testing the measurement model. 
This idea is now well-established and included in normative 
texts such as the publication manual the American Psychological 
Association (2020) or the methodological quality guidelines for 
meta-analysis (Prinsen et al., 2018; Sánchez-Meca et al., 2021). In 
other words, before calculating the internal consistency reliability 
with α or ω, it must be checked that a FA of the items show results 
compatible with the CTT. And we add that the right type of FA 
should be determined through the previous exploration of the 
data. Our view of the analysis as a three-stage journey is aligned 
with scholars that affirm that there are no quick ways to calculate 
internal consistency reliability (e.g., Liddell & Kruschke, 2018; 

Savalei & Reise, 2019) and far from the point of view of other 
scholars who advocate for the dissemination of specific software 
that produces a proxi for ω in a few steps avoiding the assessment 
of the measurement model, as for example can be done the macro 
by Hayes and Coutts (2020) for SPSS. As simulation studies have 
shown, in most cases, a good proxy for ω is simply α.

In this area, our specific contribution consists of pointing out 
that not only the road is long but, in their curves, researchers will 
find unexpected species in point-and-click-psychometrics such as 
cluster analysis, making decisions about the expected relationship 
between items and factors, about what parts of the variability of the 
responses are going to consider true or error variance, or what is a 
reasonable form for the distribution of the residual variance. The 
reward will be a deep knowledge of their data, the human group 
who participated and the theory underlying their test.

Another risk is to think that the empirical demonstrations on 
the utility and efficiency of ω for unidimensional quantitative data 
are generalisable to any other version of the coefficient ω, as for 
example, is implicit in the work by Flora (2020), in Lai (2021) or 
in Bentler (2017). These papers introduce new coefficients based 
on ω and usually provide a computer solution to calculate them. 
On the one hand, the warning by Revelle and Condon (2019) 
against the temptation to apply reliability formulas to tetrachoric or 
polychoric correlation matrices and, for the other thing, the debate 
about coefficient ωordinal (Chalmers, 2018; Yang & Green, 2015; 
Zumbo & Kroc, 2019), has made us more cautious about jumping 
to conclusions relative to new coefficients. That is why we have 
changed our mind with respect to our previous work (Viladrich 
et al., 2017). We now believe that mathematical generalizations 
of ω to new analytical conditions should be accompanied by 
comparative empirical investigations, such as that by Yang and 
Green (2015) or the more recent by Béland and Falk (2022) 
showing their advantages.

As far as the software is concerned, the implementation of the 
coefficient α is widespread while that of the coefficient ω is more 
restricted. If the data and model characteristics are aligned with 
the shaded path in Figure 1, the choice of software will not be a 
major problem for ω and even less so for α, since both coefficients 
are generally available. As the characteristics of the data or model 
move away from the ideal shaded in Figure 1 (e.g, the relationships 
are non-linear, there are some correlated errors, data are ordinal) 
the need to calculate a particular type of ω will also require access 
to and knowledge of specialised software packages. We want to 
warn against the unthinking use of software under the heading 
reliability or similar. Some of these, such as the Factor reliability 
menu of Jamovi, the reliability menu of JASP or the omega function 
of the psych package in R, provide reliability results without the 
user having control over the measurement model, whereas the 
measurement model is of utmost importance as the numerator of 
ω is based on factor loadings. It should be noted that, for the time 
being, these solutions are based on unidimensional EFA and would 
only be appropriate when the data display the conditions shaded 
in the left of Figure 1. Additionally, documentation regarding 
methods underlying an option in the menu is generally difficult to 
follow, the exception being the well documented psych package 
(Revelle & Condon, 2019). Instead, we favour the use of functions 
such as compRelSEM from the semTools package in R that derive 
the calculation of reliability coefficients from the parameters 
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estimated when fitting the measurement model. In other words, 
when data departs from the shaded path in Figure 1, researchers 
and reviewers should only trust functions where ω is a subproduct 
of a factor analysis defined by the data analyst and not obtained as 
a default in a statistical software.

Consistent with this, some comments on methods for reliability 
generalisation meta-analysis are in order. As we have said, we 
share the indication that the measurement model should be taken 
into account. However, once the unidimensional model has 
been fitted, the aggregation of reliability results is done without 
distinguishing between its estimators whether they are α or ω 
(Julio Sánchez-Meca et al., 2021) or only α (Prinsen et al., 2018). 
Perhaps not distinguishing between α and ωtotal might be a good 
idea since both coefficients share the definition of true variance and 
thus, aim to estimate the same population parameter. On the other 
hand, we consider results obtained with ω hierarchical or with ωi 
as not aggregable either with each other or with α and ωtotal, since 
the true variance is defined in a non-comparable way. Therefore, 
they should be treated separately, as it is common practice with 
other coefficients that not share with α the definition of true 
variance such as the intraclass correlation coefficient of absolute 
agreement (Prinsen et al., 2018). We think that in all studies should 
be explicitly reported which part of the variance of the responses 
has been considered as true variance. In this vein, Cho (2022), 
reaches a similar conclusion, and Scherer and Teo (2020) propose 
the more drastic solution of performing reliability generalisation 
meta-analyses on the basis of the variance-covariance matrices and 
not on the basis of the coefficients reported in the primary studies. 
This type of analysis, named meta-analytic structural equation 
modelling or MASEM, is developing very fast for the study of 
reliability generalization (Sánchez-Meca, 2022).

Turning to the study design and data analysis, researchers must 
go beyond the mental framework of obtaining data with a single 
administration and consider a posteriori which is the best formula 
for estimating internal consistency reliability. In fact, it is necessary 
to be clear from the outset about all sources of variation to include 
them in the data collection design. For example, if the researcher 
wants to measure a conceptually broad construct with few items, 
those items will have sizeable specificity. This knowledge will 
allow them to design the data collection in such a way that it is 
possible to estimate it and include it as true variance (Bentler, 
2017; Raykov, 2007). Or perhaps a researcher may choose to 
include some sources of error in the analysis of the measurement 
model as is done for example in the work of Ferrando and Navarro-
González (2021) who, using a cross-sectional design, propose a 
data analysis model in which the error attributable to each person 
is estimated in order to quantify the role it plays in the reliability 
of a test.

As novel as these proposals may seem, in our view, they add 
to what was and continues to be the objective of GT since the 
fifties of the last century. As we have said, from this theory, the 
study of reliability is conceived as the identification and control of 
possible sources of error in test scores. The designs and analyses 
proposed by Bentler (2017), Ferrando and Navarro-González 
(2021) Green and Hershberger (2000) or Raykov (2007) simply 
promote the statistical control of the sources of error in front of the 
experimental control initially adopted in GT. 

We think that addressing the question of how to control or at 
least predict possible sources of error helps to address a well-

known handicap of all reliability coefficients. These coefficients 
depend not only on the test but also on the group of people to 
whom it is applied and on the test correction procedure. According 
to Ellis (2021) one way to deal with this situation is to explicitly 
recognise that the same test can have multiple reliabilities. That 
is, now that we have accepted that there is no single formula for 
estimating reliability, and that the best formula will depend on 
what is considered error for each intended use of a test, we have 
taken the first step in admitting that there is also no fixed number 
of designs to cover this purpose. For each proposed use of a test 
it will be necessary to justify what evidence of reliability would 
be compelling as recommended by Muñiz and Fonseca-Pedrero 
(2019), Ziegler (2020) and, reflected in the different groups of 
reliability evidence collected in the Standards for Educational 
and Psychological Testing (AERA et al., 2014). This point of view 
entails a clear extension of the three classic designs of internal 
consistency, test-retest reliability and parallel measures, and 
consequently also of the interpretation of the resulting coefficients.

A final recommendation for editors and reviewers would be 
that in addition to assessing the choice of coefficient, importance 
should be given to the acceptable cut-off points and the report of 
confidence intervals. This message is not new, but we repeat it 
because it seems to be difficult to apply. Although many authors 
have provided cut-off points for reliability coefficients (see, for 
example, (DeVellis, 2003; Nunnally & Bernstein, 1994; or more 
recently Kalkbrenner, 2021; Taber, 2018), mainly based on personal 
opinions (Streiner, 2003), the proposal of Nunnally and Bernstein 
(1994) is the most recognised. For example, the recommendations 
of the COTAN model are explicitly based on it COTAN (Evers et 
al., 2013). Nunnally and Bernstein (1994) based their proposal on 
the use of test scores and established two uses: using the scores 
to obtain correlations with other variables or using them to make 
assessments of individuals. In the first case they set a reliability 
cut-off point at .80 to ensure that loss of reliability in the measures 
did not lead to a large attenuation in the correlations. In order to 
obtain highly accurate measures for the second use they raised the 
minimum reliability value to .90. However, these authors are often 
cited to justify reliability values of .70, when they restrict this value 
to “early stages of predictive or construct validation research” (p. 
264). Although it does not follow from their recommendations 
that any of these values should be taken as absolute benchmark, 
nor are these recommendations supported by empirical studies, 
many researchers, reviewers and editors resort to them, especially 
the lower criterion of .70, as absolute cut-off points (Cortina et 
al., 2020; see also Lance et al., 2006). It is also striking that it is 
common to provide point estimates of the coefficients, either α or 
ω, without the confidence interval of the coefficient as an indicator 
of the level of precision of the estimate, which should be standard 
practice for sample estimates as claimed in normative texts (Evers 
et al., 2015; Prinsen et al., 2018; Sánchez-Meca et al., 2021). It 
must be acknowledged that the value that should exceed the cut-off 
point is the lower limit of the confidence interval. An alternative 
treatment of uncertainty is that proposed in Pfadt et al. (2022) 
based on Bayesian estimation of these coefficients.

In a nutshell, if you plan to study the internal consistency 
reliability of a test score, it would be advisable to (a) organize the 
data gathering to include variables to account for all known sources 
of error; (b) analyse data exploring their completeness, shape, and 
relationships and test the measurement model fit; (c) report the 
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interval estimation of the reliability, using α or other coefficients; 
and (d) gauge its value depending on the intended test use.

This paper does not intend to close the debate on the use of 
internal consistency coefficients, much less on the estimation 
of reliability. At present, the debate is so rich and wide-ranging 
that addressing all its extremes would require much more space 
than is available in this paper. Moreover, as can be seen from the 
references, this is a field in continuous development to which 
much attention will have to be paid in the future.

References

American Educational Research Association, American Psychological 
Association & National Council on Measurement in Education. (2014). 
The Standards for Educational and Psychological Testing. American 
Educational Research Association.

Agresti, A. (1996). An introduction to categorical data analysis. Wiley.
American Psychological Association. (2020). Publication manual of the 

American Psychological Association (7th ed.). Author. 
 https://doi.org/10.1037/000016S-000
Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., 

& Rao, S. M. (2018). Journal article reporting standards for quantitative 
research in psychology: The APA publications and communications board 
task force report. American Psychologist, 73(1), 3–25. 

 https://doi.org/10.1037/amp0000191
Arbuckle, J. L. (2014). Amos (Version 23.0) [Computer software]. IBM SPSS.
Bandalos, D. L. (2021). Item meaning and order as causes of correlated 

residuals in confirmatory factor analysis. Structural Equation Modeling, 
28(6), 903–913. https://doi.org/10.1080/10705511.2021.1916395

Béland, S., & Falk, C. F. (2022). A comparison of modern and popular 
approaches to calculating reliability for dichotomously scored items. 
Applied Psychological Measurement, 46(4), 321–337. 

 https://doi.org/10.1177/01466216221084210
Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal 

consistency reliability. Psychometrika, 74(1), 137–143. 
 https://doi.org/10.1007/s11336-008-9100-1
Bentler, P. M. (2017). Specificity-enhanced reliability coefficients. Psychological 

Methods, 22(3), 527–540. https://doi.org/10.1037/met0000092
Bentler, P. M. (2021). Alpha, FACTT, and beyond. Psychometrika, 86(4), 861–

868. https://doi.org/10.1007/s11336-021-09797-8
Bovaird, J. A., & Koziol, N. A. (2012). Measurement models for ordered-

categorical indicators. In R. H. Hoyle (Ed.), Handbook of Structural 
Equation Modeling (pp. 495–511). Guilford.

Brennan, R. L. (2001). Generalizability theory. Springer.
Brown, T. A. (2015). Confirmatory factor analysis for applied research. 

Guilford.
Chalmers, R. P. (2018). On misconceptions and the limited usefulness of ordinal 

alpha. Educational and Psychological Measurement, 78(6), 1056–1071. 
 https://doi.org/10.1177/0013164417727036
Cho, E. (2022). The accuracy of reliability coefficients: A reanalysis of existing 

simulations. Psychological Methods. Advance online publication. 
 https://doi.org/10.1037/met0000475
Cho, S. J., Shen, J., & Naveiras, M. (2019). Multilevel reliability measures 

of latent scores within an item response theory framework. Multivariate 
Behavioral Research, 54(6), 856–881. 

 https://doi.org/10.1080/00273171.2019.1596780
Christensen, W. F., Wall, M. M., & Moustaki, I. (2022). Assessing dimensionality 

in dichotomous items when many subjects have all-zero responses: An 

example from psychiatry and a solution using mixture models. Applied 
Psychological Measurement, 46(3), 167–184. 

 https://doi.org/10.1177/01466216211066602
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and 

applications. Journal of Applied Psychology, 78(1), 98–104. 
 https://doi.org/10.1037/0021-9010.78.1.98
Cortina, J. M., Sheng, Z., Keener, S. K., Keeler, K. R., Grubb, L. K., Schmitt, 

N., Tonidandel, S., Summerville, K. M., Heggestad, E. D., & Banks, G. 
C. (2020). From alpha to omega and beyond! A look at the past, present, 
and (possible) future of psychometric soundness in the Journal of Applied 
Psychology. Journal of Applied Psychology, 105(12), 1351–1381. 

 https://doi.org/10.1037/apl0000815
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. 

Psychometrika, 16(3), 297-334.
Cronbach, L. J., Nageswari, R., & Gleser, G. C. (1963). Theory of 

generalizability: A liberation of reliability theory. The British Journal of 
Statistical Psychology, 16(2), 137–163. 

 https://doi.org/10.1111/j.2044-8317.1963.tb00206.x
Culpepper, S. A. (2013). The reliability and precision of total scores and IRT 

estimates as a function of polytomous IRT parameters and latent trait 
distribution. Applied Psychological Measurement, 37(3), 201–225. 

 https://doi.org/10.1177/0146621612470210
Davenport, E. C., Davison, M. L., Liou, P-Y., & Love, Q. U. (2016). Easier 

said than done: Rejoinder on Sijtsma and on Green and Yang. Educational 
Measurement: Issues and Practice, 35(1), 6–10. 

 https://doi.org/10.1111/emip.12106
Deng, L., & Chan, W. (2017). Testing the difference between reliability 

coefficients alpha and omega. Educational and Psychological Measurement, 
77(2), 185–203. https://doi.org/10.1177/0013164416658325

DeVellis, R. F. (2003). Scale development. Theory and applications. Sage.
DiStefano, C., Shi, D., & Morgan, G. B. (2020). Collapsing categories is often 

more advantageous than modeling sparse data: Investigations in the CFA 
framework. Structural Equation Modeling, 28(2), 237–249. 

 https://doi.org/10.1080/10705511.2020.1803073
Edwards, A. A., Joyner, K. J., & Schatschneider, C. (2021). A simulation study 

on the performance of different reliability estimation methods. Educational 
and Psychological Measurement, 81(6), 1–29. 

 https://doi.org/10.1177/0013164421994184
Ellis, J. L. (2021). A test can have multiple reliabilities. Psychometrika, 86(4), 

869–876. https://doi.org/10.1007/s11336-021-09800-2
Elosua, P., & Zumbo, B. D. (2008). Reliability coefficients for ordinal response 

scales. Psicothema, 20(4), 896–901.
Enders, C. K. (2010). Applied missing data analysis. Guilford.
Evers, A., Lucassen, W., Meijer, R., & Sijtsma, K. (2015). COTAN Review 

System for Evaluating Test Quality. 
 https://psynip.nl/wp-content/uploads/2022/05/COTAN-review-system-for-

evaluating-test-quality.pdf
Evers, A., Muñiz, J., Hagemeister, C., Hstmælingen, A., Lindley, P., Sjöberg, A., 

& Bartram, D. (2013). Assessing the quality of tests: Revision of the EFPA 
review model. Psicothema, 25(3), 283–291. 

 https://doi.org/10.7334/psicothema2013.97
Ferrando, P. J., & Lorenzo-seva, U. (2016). A note on improving EAP trait 

estimation in oblique factor-analytic and item response theory models. 
Psicológica, 37, 235–247.

Ferrando, P. J., & Lorenzo-Seva, U. (2018). Assessing the quality and 
appropriateness of factor solutions and factor score estimates in exploratory 
item factor analysis. Educational and Psychological Measurement, 78(5), 
762–780. https://doi.org/10.1177/0013164417719308



18

Doval et al. / Psicothema (2023), 35(1), 05-20

Ferrando, P. J., Lorenzo-seva, U., Hernández-Dorado, A., & Muñiz, J. (2022). 
Decalogue for the factor analysis of test items. Psicothema, 34(1), 7–17. 

 https://doi.org/10.7334/psicothema2021.456
Ferrando, P. J., & Navarro-González, D. (2021). Reliability and external validity 

of personality test scores: The role of person and item error. Psicothema, 
33(2), 259–267. https://doi.org/10.7334/psicothema2020.346

Flake, J. K., Pek, J., & Hehman, E. (2017). Construct validation in social 
and personality research: Current practice and recommendations. Social 
Psychological and Personality Science, 8(4), 370–378. 

 https://doi.org/10.1177/1948550617693063
Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which 

coefficient omega is right? A tutorial on using R to obtain better reliability 
estimates. Advances in Methods and Practices in Psychological Science, 
3(4), 484–501. https://doi.org/10.1177/2515245920951747

Foldnes, N., & Grønneberg, S. (2020). Pernicious polychorics: The impact 
and detection of underlying non-normality. Structural Equation Modeling, 
27(4), 525–543. https://doi.org/10.1080/10705511.2019.1673168

Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor 
analysis with ordinal indicators: A Monte Carlo study comparing DWLS 
and ULS estimation. Structural Equation Modeling, 16(4), 625–641. 

 https://doi.org/10.1080/10705510903203573
Foster, R. C. (2020). A generalized framework for classical test theory. Journal 

of Mathematical Psychology, 96, Article 102330. 
 https://doi.org/10.1016/j.jmp.2020.102330
Foster, R. C. (2021). KR20 and KR21 for some nondichotomous data (It’s 

not just Cronbach’s alpha). Educational and Psychological Measurement, 
81(6), 1172–1202. https://doi.org/10.1177/0013164421992535

Gadermann, A. M., Guhn, M., & Zumbo, B. D. (2012). Estimating ordinal 
reliability for likert-type and ordinal item response data: A conceptual, 
empirical, and practical guide. Practical Assessment, Research and 
Evaluation, 17(3), 1–13.

Gallucci, M., & Jentschke, S. (2021). Semlj: Jamovi SEM Analysis [Computer 
software]. https://semlj.github.io

García-Garzón, E., Nieto, M. D., Garrido, L. E., & Abad, F. J. (2020). Bi-factor 
exploratory structural equation modeling done right: using the slidapp 
application. Psicothema, 32(4), 607–614. 

 https://doi.org/10.7334/psicothema2020.179
Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new 

approach for estimating the number of dimensions in psychological research. 
PLoS ONE, 12(6), 1–26. https://doi.org/10.1371/journal.pone.0174035

Goodboy, A. K., & Martin, M. M. (2020). Omega over alpha for reliability 
estimation of unidimensional communication measures. Annals of the 
International Communication Association, 44(4), 422–439. 

 https://doi.org/10.1080/23808985.2020.1846135
Graham, J. (2006). Congeneric and (essentially) tau-equivalent estimates of score 

reliability. What they are and how to use them. Educational and Psychological 
Measurement, 66(6), 930–944. https://doi.org/10.1177/0013164406288165

Green, S. B., & Hershberger, S. L. (2000). Correlated errors in true score models 
and their effect on coefficient alpha. Structural Equation Modeling, 7(2), 
251–270. https://doi.org/10.1207/S15328007SEM0702_6

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural 
equation modeling: An alternative to coefficient alpha. Psychometrika, 74(1), 
155–167. https://doi.org/10.1007/s11336-008-9099-3

Green, S. B., & Yang, Y. (2015). Evaluation of dimensionality in the assessment 
of internal consistency reliability: coefficient alpha and omega coefficients. 
Educational Measurement: Issues and Practice, 34(4), 14–20. 

 https://doi.org/10.1111/emip.12100
Greenacre, M. (2017). Correspondence analysis in practice (3rd ed.). Chapman 

& Hall. https://doi.org/10.1201/9781315369983

Gu, F., Little, T. D., & Kingston, N. M. (2013). Misestimation of reliability 
using coefficient alpha and structural equation modeling when assumptions 
of tau-equivalence and uncorrelated errors are violated. Methodology, 9(1), 
30–40. https://doi.org/10.1027/1614-2241/a000052

Gulliksen, H. (1950). Theory of mental tests. Wiley. 
Hallquist, M., Willey, J., van Lissa, C., & Morillo, D. (2022). MplusAutomation: 

an R package for facilitating large-scale latent variable analyses in Mplus 
(1.1.0) [Computer software]. 

 https://michaelhallquist.github.io/MplusAutomation/
Hayes, A. F., & Coutts, J. J. (2020). Use omega rather than Cronbach’s alpha for 

estimating reliability. But… Communication Methods and Measures, 14(1), 
1–24. https://doi.org/10.1080/19312458.2020.1718629

Hernández, A., Ponsoda, V., Muñiz, J., Prieto, G., & Elosua, P. (2016). Revisión 
del modelo para evaluar la calidad de los tests utilizados en España 
[Assessing the quality of tests in spain: revision of the spanish test review 
model]. Papeles Del Psicólogo, 37(3), 192–197.

Hoekstra, R., Vugteveen, J., Warrens, M. J., & Kruyen, P. M. (2019). An 
empirical analysis of alleged misunderstandings of coefficient alpha. 
International Journal of Social Research Methodology, 22(4), 351–364. 

 https://doi.org/10.1080/13645579.2018.1547523
Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: 

Techniques and applications. Routledge.
Hussey, I., & Hughes, S. (2020). Hidden invalidity among 15 commonly used 

measures in social and personality psychology. Advances in Methods and 
Practices in Psychological Science, 3(2), 166–184. 

 https://doi.org/10.1177/2515245919882903
IBM Corp. (2021). IBM SPSS Statistics for Windows, Version 28.0 (28.0) 

[Computer software]. IBM Corp.
JASP Team. (2022). JASP (Jeffreys’s Amazing Statistics Program) (0.16.2) 

[Computer software]. https://jasp-stats.org/
Kalkbrenner, M. T. (2021). Alpha, omega, and H internal consistency reliability 

estimates: Reviewing these options and when to use them. Counseling 
Outcome Research and Evaluation, Published. Advance online publication, 
1–12. https://doi.org/10.1080/21501378.2021.1940118

Kim, S., Lu, Z., & Cohen, A. S. (2020). Reliability for tests with items 
having different numbers of ordered categories. Applied Psychological 
Measurement, 44(2), 137–149. https://doi.org/10.1177/0146621619835498

Kim, Seonghoon, & Feldt, L. S. (2010). The estimation of the IRT reliability 
coefficient and its lower and upper bounds, with comparisons to CTT 
reliability statistics. Asia Pacific Education Review, 11(2), 179–188. 

 https://doi.org/10.1007/s12564-009-9062-8
Komperda, R., Pentecost, T. C., & Barbera, J. (2018). Moving beyond alpha: A 

primer on alternative sources of single-administration reliability evidence for 
quantitative chemistry education research. Journal of Chemical Education, 
95(9), 1477–1491. https://doi.org/10.1021/acs.jchemed.8b00220

Lai, M. H. C. (2021). Composite reliability of multilevel data: It’s about 
observed scores and construct meanings. Psychological Methods, 26(1), 
90–102. https://doi.org/10.1037/met0000287

Lance, C., Butts, M. M., & Michels, L. C. (2006). The sources of four commonly 
reported cutoff criteria: What did they really say? Organizational Research 
Methods, 9(2), 202–220. https://doi.org/10.1177/1094428105284919

Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric 
models: What could possibly go wrong? Journal of Experimental Social 
Psychology, 79, 328–348. https://doi.org/10.1016/j.jesp.2018.08.009

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, 
I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, 
revisada y actualizada [The exploratory factor analysis of the items: a 
practical guide, revised and updated]. Anales de Psicología, 30(3), 1151–
1169. https://doi.org/10.6018/analesps.30.3.199361



19

Alpha Resists

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. 
Addison Wesley.

Lorenzo-Seva, U., & Ferrando, P. J. (2012). TETRA-COM: A comprehensive 
SPSS program for estimating the tetrachoric correlation. Behavior Research 
Methods, 44(4), 1191–1196. https://doi.org/10.3758/s13428-012-0200-6

Lorenzo-Seva, U., & Ferrando, P. J. (2015). POLYMAT-C: A comprehensive 
SPSS program for computing the polychoric correlation matrix. Behavior 
Research Methods, 47(3), 884–889. 

 https://doi.org/10.3758/s13428-014-0511-x
McCrae, R. R. (2015). A more nuanced view of reliability: specificity in the 

trait hierarchy. Personality and Social Psychology Review, 19(2), 97–112. 
 https://doi.org/10.1177/1088868314541857
McDonald, R. P. (1999). Test theory: a unified treatment. Lawrence Erlbaum 

Associates.
McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. 

Psychological Methods, 23(3), 412–433. 
 https://dx.doi.org/10.1037/met0000144
Muñiz, J. (2018). Introducción a las Teorías Psicométricas [Introduction to 

Psychometric Theories]. Pirámide. 
Muñiz, J., & Fonseca-Pedrero, E. (2019). Ten steps for test development. 

Psicothema, 31(1), 7–16. https://doi.org/10.7334/psicothema2018.291
Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2016). Regression and 

mediation analysis using Mplus. Muthén & Muthén.
Muthén, L. K., & Muthén, B. O. (2017). Mplus User’s Guide (8th edition). 

Muthén & Muthén.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. McGraw-Hill.
Olvera, O. L., Kroc, E., & Zumbo, B. D. (2020). The role of item distributions on 

reliability estimation: the case of Cronbach’s coefficient alpha. Educational 
and Psychological Measurement, 80(5), 825–846. 

 https://doi.org/10.1177/0013164420903770
Oosterwijk, P. R., van der Ark, L. A., & Sijtsma, K. (2019). Using confidence 

intervals for assessing reliability of real tests. Assessment, 26(7), 1207–
1216. https://doi.org/10.1177/1073191117737375

Pfadt, J. M., van den Bergh, D., Klaas, S., Moshagen, M., & Wagenmakers, 
E.-J. (2022). Bayesian estimation of single-test reliability coefficients 
bayesian estimation of single-test reliability coefficients. 57(4), 620–641. 
Multivariate Behavioural Research, 57(4). 

 https://doi.org/10.1080/00273171.2021.1891855
Pons, J., Viladrich, C., & Ramis, Y. (2017). Examining the big three of coping 

in adolescent athletes using network analysis. Revista de Psicologia Del 
Deporte, 26, 68–74.

Prinsen, C. A. C., Mokkink, L. B., Bouter, L. M., Alonso, J., Patrick, D. L., de 
Vet, H. C. W., & Terwee, C. B. (2018). COSMIN guideline for systematic 
reviews of patient-reported outcome measures. Quality of Life Research, 
27(5), 1147–1157. https://doi.org/10.1007/s11136-018-1798-3

R Core Team. (2021). R: A language and environment for statistical computing 
[Computer software]. R Foundation for Statistical Computing. 

 https://www.r-project.org/
Raykov, T. (1997a). Estimation of composite reliability for congeneric 

measures. Applied Psychological Measurement, 21(2), 173–184. 
 https://doi.org/0803973233
Raykov, T. (1997b). Scale reliability, Cronbach’s coefficient alpha, and 

violations of essential tau-equivalence with fixed congeneric components. 
Multivariate Behavioral Research, 32(4), 329–353. 

 https://doi.org/10.1207/s15327906mbr3204_2
Raykov, T. (2001). Bias of coefficient alpha for fixed congeneric measures with 

correlated errors. Applied Psychological Measurement, 25(1), 69–76. 
 https://doi.org/10.1177/01466216010251005

Raykov, T. (2004). Point and interval estimation of reliability for multiple-
component measuring instruments via linear constraint covariance structure 
modeling. Structural Equation Modeling, 11(3), 452–483. 

 https://doi.org/10.1207/s15328007sem1103
Raykov, T. (2007). Reliability of multiple-component measuring instruments: 

Improved evaluation in repeated measure designs. British Journal of 
Mathematical and Statistical Psychology, 60(1), 119–136. 

 https://doi.org/10.1348/000711006X100464
Raykov, T., Anthony, J. C., & Menold, N. (2022). On the importance of 

coefficient alpha for measurement research: loading equality is not necessary 
for alpha’s utility as a scale reliability index. Educational and Psychological 
Measurement. Advance online publication. 

 https://doi.org/10.1177/00131644221104972
Raykov, T., Dimitrov, D. M., & Asparouhov, T. (2010). Evaluation of scale 

reliability with binary measures using latent variable modeling. Structural 
Equation Modeling: A Multidisciplinary Journal, 17(2), 265–279. 

 https://doi.org/10.1080/10705511003659417
Raykov, T., & Marcoulides, G. A. (2015). A direct latent variable modeling 

based method for point and interval estimation of coefficient alpha. 
Educational and Psychological Measurement, 75(1), 146–156. 

 https://doi.org/10.1177/0013164414526039
Raykov, T., & Marcoulides, G. A. (2016). Scale reliability evaluation 

under multiple assumption violations. Structural Equation Modeling: A 
Multidisciplinary Journal, 23(2), 302–313. 

 https://doi.org/10.1080/10705511.2014.938597
Raykov, T., & Marcoulides, G. A. (2019). Thanks coefficient alpha, we still 

need you! Educational and Psychological Measurement, 79(1), 200–210. 
 https://doi.org/10.1177/0013164417725127
Raykov, T., Marcoulides, G. A., Harrison, M., & Menold, N. (2019). Multiple-

component measurement instruments in heterogeneous populations: Is there 
a single coefficient alpha? Educational and Psychological Measurement, 
79(2), 399–412. https://doi.org/10.1177/0013164417733305

Revelle, W. (2022). psych: Procedures for personality and pscychological 
research (2.2.5) [Computer software]. 

 https://personality-project.org/r/psych/
Revelle, W., & Condon, D. M. (2019). Reliability from α to ω: A tutorial. 

Psychological Assessment, 31(12), 1395–1411. 
 https://doi.org/10.1037/pas0000754
Revelle, W., & Zinbarg, R. E. (2009). Coefficient alpha, beta, omega, and the 

GLB: Comment on Sitjsma. Psychometrika, 74(1), 145–154.
Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical 

variables be treated as continuous? A comparison of robust continuous 
and categorical SEM estimation methods under suboptimal conditions. 
Psychological Methods, 17(3), 354–373. https://doi.org/10.1037/a0029315

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016a). Applying bifactor 
statistical indices in the evaluation of psychological measures. Journal of 
Personality Assessment, 98(3), 223–237. 

 https://doi.org/10.1080/00223891.2015.1089249
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016b). Evaluating bifactor 

models: Calculating and interpreting statistical indices. Psychological 
Methods, 21(2), 137–150. https://doi.org/10.1037/met0000045

Sánchez-Meca, J. (2022, July 20). Meta-análisis de generalización de la 
fiabilidad [Reliability generalization Meta-analysis][Simposium]. XVII 
Congreso de Metodología de Las Ciencias Sociales y de La Salud.

Sánchez-Meca, Julio, Marín-Martínez, F., López-López, J. A., Núñez-
Núñez, R. M., Rubio-Aparicio, M., López-García, J. J., López-Pina, J. A., 
Blázquez-Rincón, D. M., López-Ibáñez, C., & López-Nicolás, R. (2021). 
Improving the reporting quality of reliability generalization meta-analyses: 



20

Doval et al. / Psicothema (2023), 35(1), 05-20

The REGEMA checklist. Research Synthesis Methods, 12(4), 516–536. 
https://doi.org/10.1002/jrsm.1487

Savalei, V., & Reise, S. P. (2019). Don’t forget the model in your model-based 
reliability coefficients: A reply to McNeish (2018). Collabra: Psychology, 
5(1), 36. https://doi.org/10.1525/collabra.247

Savalei, V., & Rhemtulla, M. (2013). The performance of robust test statistics with 
categorical data. British Journal of Mathematical and Statistical Psychology, 
66(2), 201–223. https://doi.org/10.1111/j.2044-8317.2012.02049.x

Scherer, R., & Teo, T. (2020). A tutorial on the meta-analytic structural equation 
modeling of reliability coefficients. Psychologycal Methods, 25(6), 747–
775. https://doi.org/10.1037/14262-002

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological 
Assessment, 8(4), 350–353.

Shi, D., Lee, T., Fairchild, A. J., & Maydeu-Olivares, A. (2020). Fitting 
ordinal factor analysis models with missing data: A comparison between 
pairwise deletion and multiple imputation. Educational and Psychological 
Measurement, 80(1), 41–66. https://doi.org/10.1177/0013164419845039

Sideridis, G. D., Tsaousis, I., & Al-Sadaawi, A. (2019). An application of 
reliability estimation in longitudinal designs through modeling item-specific 
error variance. Educational and Psychological Measurement, 79(6), 1038–
1063. https://doi.org/10.1177/0013164419843162

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of 
Cronbach’s alpha. Psychometrika, 74(1), 107–120. 

 https://doi.org/10.1007/s11336-008-9101-0
Sijtsma, K., & Pfadt, J. M. (2021). Part II: On the use, the misuse, and the 

very limited usefulness of Cronbach’s alpha: discussing lower bounds and 
correlated errors. Psychometrika, 86, 843–860. 

 https://doi.org/10.1007/s11336-021-09789-8
Slaney, K. L., Tkatchouk, M., Gabriel, S. M., & Maraun, M. D. (2009). 

Psychometric assessment and reporting practices: Incongruence between 
theory and practice. Journal of Psychoeducational Assessment, 27(6), 465–
476. https://doi.org/10.1177/0734282909335781

StataCorp. (2021). Stata statistical software. (Release 17) [Computer software]. 
StataCorp LLC. https://www.stata.com/

Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient 
alpha and internal consistency. Journal of Personality Assessment, 80(1), 
99–103.

Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting 
research instruments in science education. Research in Science Education, 
48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2

The jamovi project (2021). The jamovi project (v1.6) [Computer software]. 
 https://www.jamovi.org
Thurstone, L. L. (1947). Multiple factor analysis. University of Chicago Press.

Viladrich, C., y Angulo-Brunet, A. (2019). Reliability of Essentially 
Unidimensional Measures Derived From Bifactor Modeling With R, Mplus 
and Stata. [Data set and syntax]. Universitat Autònoma de Barcelona. 
https://ddd.uab.cat/record/205936

Viladrich, C., Angulo-Brunet, A., & Doval, E. (2017). A journey around alpha 
and omega to estimate internal consistency reliability. Annals of Psychology, 
33(3), 755–782. https://doi.org/10.6018/analesps.33.3.268401

Viladrich, C., Angulo-Brunet, A., & Doval, E. (2019). Mplus and stata tools to 
calculate the internal consistency reliability coefficients alpha and omega 
[Data set and syntax]. Universitat Autònoma de Barcelona. 

 https://ddd.uab.cat/record/205870
Weijters, B., Geuens, M., & Schillewaert, N. (2009). The proximity effect: The 

role of inter-item distance on reverse-item bias. International Journal of 
Research in Marketing, 26(1), 2–12. 

 https://doi.org/10.1016/j.ijresmar.2008.09.003
Xiao, L., & Hau, K.T. (2022). Performance of coefficient alpha and its 

alternatives: Effects of different types of non-normality. Educational and 
Psychological Measurement. Advance online publication. 

 https://doi.org/10.1177/00131644221088240
Yang, Y., & Green, S. B. (2011). Coefficient alpha: A reliability coefficient for 

the 21st Century? Journal of Psychoeducational Assessment, 29(4), 377–
392. https://doi.org/10.1177/0734282911406668

Yang, Y., & Green, S. B. (2015). Evaluation of structural equation modeling 
estimates of reliability for scales with ordered categorical items. 
Methodology, 11(1), 23–34. https://doi.org/10.1027/1614-2241/a000087

Yang, Y., & Xia, Y. (2019). Categorical omega with small sample sizes via 
bayesian estimation: An alternative to frequentist estimators. Educational 
and Psychological Measurement, 79(1), 19–39. 

 https://doi.org/10.1177/0013164417752008
Ziegler, M. (2020). Psychological test adaptation and development – How papers 

are structured and why. Psychological Test Adaptation and Development. 
Advance online publication. https://doi.org/10.1027/2698-1866/a000002

Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s 
β, and Mcdonald’s ωH: their relations with each other and two alternative 
conceptualizations of reliability. Psychometrika, 70(1), 123–133. 

 https://doi.org/10.1007/s11336-003-0974-7
Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of 

coefficients alpha and theta for Likert rating scales. Journal of Modern 
Applied Statistical Methods, 6(1), 21–29. 

 https://doi.org/10.1107/S0907444909031205
Zumbo, B. D., & Kroc, E. (2019). A measurement is a choice and Stevens’ scales 

of measurement do not help make it: A response to Chalmers. Educational 
and Psychological Measurement, 79(6), 1184–1197. 

 https://doi.org/10.1177/0013164419844305


