
N= 1 designs are frequent and sometimes the only possible in
applied research in cognitive, clinical or educational psychology
(e.g., Crane, 1985; Martínez, Ortiz, & González, 2007; Olivencia
& Cangas, 2005; Onghena & Edgington, 2005; Rabin, 1981;
Tervo, Estrem, Bryson-Brockman, & Symons, 2003). The
development of appropriate single-case (i.e., repeated measures)
analytical techniques requires addressing the question of
autocorrelation (Busk & Marascuilo, 1988; Sharpley & Alavosius,
1988; Suen & Ary, 1987). Mixed models are a viable option
especially when multiple dependent variables are measured
(Vallejo & Lozano, 2006). Randomization tests constitute another
proposal (Edgington, 1995) and require fewer assumptions than
classical parametric tests. Unlike visual inspection, formal
decision rules are available for randomization tests through
statistical significance values. Moreover, this procedure does not
require as much observation points and analysts’ expertise as
interrupted time series analysis. Nevertheless, the statistical

properties of randomization test have to be investigated in the
presence of different degrees of serial dependency in order to
establish the validity of the technique as defined by Edgington
(1980b) and Hayes (1996).    

Although randomization tests are not so widely known and
applied as ANOVA or ARIMA, a considerable amount of research
has already been produced. Among the designs studied can be
found AB (Ferron & Ware, 1995), ABAB (Ferron, Foster-
Johnson, & Kromrey, 2003; Ferron & Ware, 1995; Levin,
Marascuilo, & Hubert, 1978), ABABAB (Ferron & Onghena,
1996), multiple baseline (Ferron & Sentovich, 2002; Wampold &
Worsham, 1986), responsive designs (Ferron & Ware, 1994),
simultaneous treatment designs (Kratochwill & Levin, 1980),
restricted alternating treatments design (Onghena & Edgington,
1994), replicated AB (Lall & Levin, 2004; Levin & Wampold,
1999) and replicated ABAB designs (Marascuilo & Busk, 1988).
Most of these investigations suggested that Type I error rates are
generally controlled in presence of autocorrelation. Power seems
adequate for some designs (Ferron & Onghena, 1996) and
insufficient for others (Ferron & Ware, 1995). 

The application of randomization tests requires the
randomization of some aspect of the design prior to data
collection. In N= 1 studies, one possibility is to randomly assign
the measurement times to the conditions (baseline and treatment).
The procedure followed in the present study refers to phase
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designs (i.e., random determination of phase change) rather than to
alternation designs, using the terms of Onghena & Edgington
(2005). Another feature of the technique is that the reference set to
which the value of the test statistic is compared is not a
«sampling» but a «randomization» distribution as it arises from
the permutations of data divisions. Hence, there is an implicit
conditioning inherent to randomization tests as the statistical
significance depends on the data at hand. One way of analyzing
the statistical properties of randomization tests is based on the idea
that the randomization distribution and statistical significance do
not depend on the specific data division chosen. We refer to this
approach as the «common distribution» and it is the one followed
by the studies cited in the previous paragraph. This method
estimates Type I and Type II error rates as a function of, for
example, the degree of serial dependence (j) and the series length
(n). It assumes that the randomization test has similar (if not
equivalent) performance for each data division, that is to say,
regardless of the length of the individual phases (e.g., nA1, nB1, nA2,
and nB2 for an ABAB design). 

Another way of studying randomization tests involves what we
denominate «data-division-specific distributions». According to
this approach the randomization distribution is different for each
data division. As a result, the same value of the test statistic
obtained from distinct data divisions may have a different position
in the reference set and, hence, the significance level is not the
same. Recent investigations have already tried to show the
discrepancies in the results between the two methods for a variety
of designs, for instance, AB (Manolov & Solanas, 2007) and
ABABAB (Sierra, Solanas, & Quera, 2005). However,
straightforward comparisons between studies are not always
suitable due to imperfect correspondence between design lengths,
autocorrelation levels and effect sizes studied. Other procedural
d i v e rgences cannot be ruled out unless the same authors conduct an
investigation including both approaches prior to comparing them. 

Thus, the objective of the present study is to apply
randomization tests to single-case data generated by means of
Monte Carlo simulations. The assessment of the statistical
properties of the data analysis technique will be carried out using
data-division-specific as well as common distributions in order to
show the incongruity of the conclusions that can be made
according to which method is employed as a fundament.    

Method

Selection of designs 

The random assignment procedure for the ABAB designs
studied is based on Onghena’s (1992) proposal for randomly
selecting the three points of change in phase. The restriction of a
minimal phase (i.e., nA1, nB1, nA2, and nB2) length is applied to both
approaches and it implies that the points of change are not
independent. To make the selection each data division equally
probable the random assignment is performed choosing from a list
of all admissible «triplets» (data divisions are called «triplets» and
are symbolized by «b1.a2.b2» – the first points of the last three
phases in the ABAB design). The following design lengths were
studied:

a) n= 20. A minimum of three data points per phase was used
as it allows choosing out of a total of 165 different data

divisions (following the formula presented in Onghena,
1992) and permits evaluating potential tendencies in the
data belonging to each phase. Although more observations
per condition would lead to a more precise estimate on the
behaviour of the experimental unit in each phase, the length
of the design is inversely related to its applicability in
applied settings. 

b) n= 25. In this case the minimal phase length was 4. The
total number of different triplets is 220. 

c) n= 30. This design length (equal to the one used by Ferron,
Foster-Johnson, & Kromrey, 2003) permits, following
Edgington’s (1980a) recommendations, establishing a
minimum of five measurement times per phase. As a
consequence, there are 286 different triplets. 

Data generation

Data was generated applying an equation commonly used (e.g.,
Ferron, Foster-Johnson, & Kromrey, 2003; Ferron & Onghena,
1996; Ferron & Sentovich, 2002; Ferron & Ware, 1995; Matyas &
Greenwood, 1990) in research focused on similar topics: yt= j1yt–1
+ εt + d, where:

yt: datum obtained at measurement time t;
yt–1: previous datum; 
j1: value of the lag-one autocorrelation coefficient;
εt: independent error; 
d: effect size.

We only focus on this first-order autoregressive model as it is
the most common one in investigations centred on the same topic
and due to the fact that we aim to show the difference in Type I
and Type II error estimates between the studies referenced above
and the present one. By means of the FORTRAN 90 programming
language various programs were constructed in order to: a) make
calls to the external subroutines nag_rand_seed_set and
nag_rand_normal of NAG fl90 mathematical-statistical libraries
for the generation of an error term (εt) according to a N(0,1); b)
apply the formula previously specified; c) calculate the values and
ranks of the test statistics. 

Different levels of serial dependency (j1) were represented by
values (–0.3, 0.0, 0.3 y 0.6) that assumingly represent adequately
the characteristics of real data and, therefore, have been frequently
used in simulation studies (Ferron & Onghena, 1996; Ferron &
Ware, 1995; Greenwood & Matyas, 1990). 

E ffect size (d) was calculated as the difference between phase
means divided by the standard deviation of the error term (εt), as
defined in Ferron & Sentovich (2002). When the Type I error rates
were the centre of interest, d was set to zero. The statistical power of
the randomization tests was estimated for various effect sizes: 0.20,
0.50, 0.80, 1.10, 1.40, 1.70, and 2.00, replicating values from
previous studies (e.g., Ferron & Onghena, 1996; Ferron & Sentovich,
2002). Effect sizes were applied in a way to produce an immediate
increment in behaviour as each of the B-phases starts, while also
maintaining that change in level throughout the whole phase. 

Simulation

The simulation consisted of the following steps: 1) selection of
an admissible triplet; 2) systematic selection of each of the four
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levels of autocorrelation studied; 3) systematic selection of each
effect size; 4) generation of data according to the equation
presented; 5) calculation of the test statistics for the actual data,
obtaining the outcome; 6) calculation of the tests statistics for each
possible (and not selected) triplet; 7) ranking of the outcome
according to its position in the reference set; 8) calculation of the
proportion of critical ranks (only for the power study). 

Simulation: common distributions

Step 1 was iterated 100,000 times, which seems enough to allow
a precise estimation of Type I and II error rates (Robey &
Barcikowski, 1992), as the common distributions approach does not
imply a separate estimation for each data division but only a global
one for each level of autocorrelation. For the study of Type I error
rates d was invariably zero, while steps 4 to 7 were repeated for the
four degrees of serial dependence studied. Hence, there were
100,000 * 4= 400,000 designs generated for each design length. 

For the study of Type II error rates, steps 4 to 7 were repeated
for each combination of autocorrelation level and effect size
producing a total of 2,800,000 samples for each design length (n).

Simulation: data-division-specific distributions

In order to estimate Type I error rates for all triplets, step 1
involved the systematic selection of the data divisions and,
therefore, was repeated 165 or 220 or 286 times according to
d e s i g n ’s length. Step 2 was repeated 4 times and steps 4 to 7 –
100,000 times defining a total number of iterations of 66,000,000
for n= 20; 88,000,000 for n= 25; and 114,400,000 for n= 30. Setting
an equal number of iterations for estimating empirical error rates in
both methods (common and data-division-specific) guarantees a
proper comparison between each pair of experimental conditions.

In the Type II error rates study were included only the triplets
for which the randomization test was robust against the violation
of the independence assumption. The different combinations of
iteration, triplet, values of j1 and value of d determine the number
of samples simulated: a) 100,000 * 33 * 4 * 7= 92,400,000 for n=
20; b) 100,000 * 40 * 4 * 7= 112,000,000 for n= 25; c) 100,000 *
57 * 4 * 7= 159,600,000 for n= 30. 

Analysis

We contrasted the following null hypothesis at 5% alpha:

H0: X–A ≥ X–B

Two test statistics were used:

a) Mean difference (hereinafter, MD): X–B – X–A.

b) Student’s t (hereinafter, ST): .

The pooled variance estimate is used, as the process has
been generated with a common variance for all phases. 

Each test statistic is calculated on the actual data (i.e., the triplet
selected) and after its value is located in the randomization
distributions, the rank assignation takes place. The proportion of
each rank is then calculated and the empirical distribution of ranks
is obtained. When considering the common method, there is one

ranks’ distribution for each combination of degree of serial
dependence and test statistic (reaching a total of 8), while the data-
division-specific method implied that each data division had its
own eight distributions of ranks. 

In the absence of treatment effect and for uncorrelated data it
was important to identify how many ranks enter the 5% barrier
defined by the significance level chosen and can be regarded as
«critical» for rejecting the null hypothesis. After that, robustness
intervals following Bradley’s stringent criterion (1978, cited in
Robey & Barcikowski, 1992), α ± 0.1 α, were constructed around
the cumulative proportions of ranks identified. The relative
frequencies of the same number of ranks for j1 = –0.3, 0.3, and 0.6
were compared to the robustness intervals. In case there was no
underestimation or overestimation in presence of autocorrelation,
the randomization test was judged to be robust. The decision
regarding robustness was made several times: a) following the
common method – twice (in accordance with the number of test
statistics) for each design length; b) following the data-division-
specific method: 2 * 165 times for n= 20, 2 * 220 times for n= 25,
and 2 * 286 times for n= 30.

For the cases in which the randomization test was robust, the
corresponding number of critical ranks was used as cut-off points
for the power analysis. The proportion of occasions in which the
outcome has been assigned one of the critical ranks was the value
of interest. This procedure resulted in one power estimate for each
combination of j1, d and test statistic for common distributions,
while for data-division-specific distributions there were different
estimates for the distinct triplets. 

Results

In this section only part of the data will be presented in tabular
or graphical format. Full tables are available from the authors
upon request. 

Triplet selection

With data-division-specific distributions, each of the specific
data divisions appears exactly 100,000 times in a systematic
manner. The common simulation involves the random selection of
a triplet in each of the 100,000 iterations and calculations showed
that it resulted in each data divisions appearing approximately the
same number of times. However, we should emphasize two
questions. First, the common distributions approach makes no
triplet-specific estimations but only global ones. Second, it is
necessary to distinguish between the data-division-specific
method of performing a simulation study on a randomization test
(which involves non-random determination of the triplet) and the
procedure that should be followed in an applied setting where the
application of a randomization test requires the random selection
of a data division. The data-division-specific approach is not
supposed to encourage non-random selection of points of change
in phase, but rather to acquaint applied researchers with most
appropriate cut-off ranks for null-hypothesis rejection for each
triplet.   

Distribution of ranks

Simulations based on common distributions suggest that the
distribution of ranks for the studied experimental conditions is a

€ 

X B − X A( ) / s2 /nB + s2 /nA
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uniform one irrespective of the autocorrelation level (see figures 1,
2, and 3). When we consider data-division-specific distributions,
however, it is obvious that the uniform distribution is the less
frequent one even for independent data series. According to the
triplet chosen, the distribution of ranks may actually be uniform
(figure 4), but it also may be U-shaped (figure 5), approximately
triangular (figure 6) or bimodal (figure 7). An important sequel of
these distributional differences was the incongruity among the
number of critical ranks. This finding was common to all design
lengths studied and this is the reason for suppressing redundant
graphical representations.

Robustness

Another discrepancy between common and data-division-
specific distributions was made evident when making the
robustness decisions. When the former method was used, the
randomization test was declared unaffected by autocorrelation (in
general) for all n. In contrast, the latter approach indicated that the
statistical technique was robust only for certain data divisions. The

common approach yielded the following number of critical
extreme ranks: 8 for n= 20, 11 for n= 25, and 14 for n= 30. There
proved to be no difference between the test statistics used. The
data-division-specific approach resulted in a different number of
critical ranks for the distinct triplets and the two test statistics
constituted another source of variation: a) n= 20: 33 robust triplets
out of 165; critical ranks varied from 2 to 12; b) n= 25: 40 robust
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Figure 3. Ranks distribution obtained using common distributions; n= 30;
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triplets out of 220; critical ranks varied from 3 to 16; c) n= 30: 57
robust triplets out of 286; critical ranks varied from 4 to 22. 

Power

Sensitivity to treatment effects assessed by both methods
showed less incongruity. The power estimates obtained for equal
design lengths were quite similar (as it can be seen from tables 1
to 6), but we have to keep in mind that there is no specific
information about a considerable fraction of triplets, as they
proved not to control the Type I error rate. Generally, the
randomization test has adequate (1–β ≥ 0.80; in Cohen’s (1992)
terms) power for d= 2.0, and in some cases even for d= 1.7, while
j1= 0.6 is associated with insensitivity.

Discussion

The results reported by the present study show that Type I error
rates vary across data divisions when the observations are
independent (i.e., there is no assumption violated). This is due to
the fact that the shape of the randomization distribution is not the
same for all data divisions, contrary to what the common
distribution approach assumes. If in the absence of serial
dependence statistical decisions are made on the basis of the
common distribution (e.g., using the 11 extreme ranks to reject the
null hypothesis in a n= 25 design), the empirical Type I error rate
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Table 1
Power estimates for n= 20 using the common approach

j test d= 0.2 d= 0.5 d= 0.8 d= 1.1 d= 1.4 d= 1.7 d= 2.0
statistic

-0.3 MD 0.0848 0.1700 0.2900 0.4381 0.5846 0.7173 0.8203
ST 0.0851 0.1712 0.2928 0.4420 0.5892 0.7224 0.8263

0.0 MD 0.0866 0.1766 0.3064 0.4611 0.6177 0.7507 0.8510
ST 0.0868 0.1774 0.3093 0.4651 0.6231 0.7570 0.8577

0.3 MD 0.0845 0.1686 0.2871 0.4273 0.5715 0.6964 0.7942
ST 0.0853 0.1694 0.2895 0.4306 0.5755 0.7012 0.7986

0.6 MD 0.0758 0.1399 0.2200 0.3006 0.3728 0.4314 0.4736
ST 0.0764 0.1399 0.2203 0.2997 0.3719 0.4292 0.4703

Table 2
Power estimates for n= 25 using the common approach

j test d= 0.2 d= 0.5 d= 0.8 d= 1.1 d= 1.4 d= 1.7 d= 2.0
statistic

-0.3 MD 0.0916 0.1945 0.3281 0.4892 0.6442 0.7732 0.8644
ST 0.0934 0.1948 0.3298 0.4927 0.6477 0.7761 0.8686

0.0 MD 0.0924 0.1967 0.342 0.5118 0.6733 0.8038 0.8928
ST 0.0926 0.1977 0.3442 0.5146 0.6768 0.8076 0.8973

0.3 MD 0.0916 0.1883 0.3217 0.4780 0.6271 0.7470 0.8391
ST 0.0918 0.1890 0.3235 0.4820 0.6311 0.7512 0.8441

0.6 MD 0.0845 0.1537 0.2413 0.3338 0.4048 0.4628 0.5030
ST 0.0843 0.1547 0.2417 0.3334 0.4041 0.4606 0.4991

Table 3
Power estimates for n= 30 using the common approach

j test d= 0.2 d= 0.5 d= 0.8 d= 1.1 d= 1.4 d= 1.7 d= 2.0
statistic

-0.3 MD 0.0924 0.2002 0.3520 0.5190 0.6777 0.8063 0.8929
ST 0.0927 0.201 0.3525 0.5220 0.6804 0.8096 0.8955

0.0 MD 0.0925 0.2058 0.3691 0.5428 0.7063 0.8329 0.9152
ST 0.0930 0.2060 0.3700 0.5472 0.7115 0.8362 0.9180

0.3 MD 0.0933 0.1963 0.3440 0.5102 0.6600 0.7821 0.8677
ST 0.0934 0.1973 0.3466 0.5141 0.6646 0.7870 0.8717

0.6 MD 0.0861 0.1630 0.2584 0.3547 0.4278 0.4845 0.5273
ST 0.0861 0.1632 0.2595 0.3545 0.4276 0.4845 0.5248

Table 4
Mean power estimates (based on 30 triplets for MD and 31 triplets for ST) for

n= 20 using the data division specific approach

j test d= 0.2 d= 0.5 d= 0.8 d= 1.1 d= 1.4 d= 1.7 d= 2.0
statistic

-0.3 MD 0.0818 0.1664 0.2821 0.4275 0.5772 0.7205 0.8244
ST 0.0819 0.1669 0.2839 0.4303 0.5800 0.7236 0.8266

0.0 MD 0.0839 0.1738 0.3050 0.4622 0.6212 0.7575 0.8586  

ST 0.0838 0.1742 0.3062 0.4643 0.6233 0.7592 0.8596
0.3 MD 0.0828 0.1668 0.2870 0.4310 0.5747 0.6824 0.7979

ST 0.0825 0.1671 0.2879 0.4308 0.5738 0.6984 0.7956
0.6 MD 0.0754 0.1392 0.2191 0.3028 0.3783 0.4399 0.4875

ST 0.0753 0.1390 0.2183 0.3007 0.3746 0.4342 0.4807

Table 5
Mean power estimates (based on 39 triplets for MD and 38 triplets for ST) for

n= 25 using the data division specific approach

j test d= 0.2 d= 0.5 d= 0.8 d= 1.1 d= 1.4 d= 1.7 d= 2.0
statistic

-0.3 MD 0.0856 0.1769 0.3195 0.4812 0.6383 0.7692 0.8642
ST 0.0875 0.1851 0.3245 0.4872 0.6439 0.7737 0.8672

0.0 MD 0.0876 0.1898 0.3367 0.5093 0.6724 0.8029 0.8930
ST 0.0900 0.1942 0.3431 0.5161 0.6781 0.8068 0.8953

0.3 MD 0.0868 0.1830 0.3196 0.4767 0.6261 0.7487 0.8393
ST 0.0896 0.1881 0.3269 0.4841 0.6324 0.7532 0.8421

0.6 MD 0.0798 0.1517 0.2423 0.3294 0.4057 0.4646 0.5085
ST 0.0829 0.1567 0.2463 0.3360 0.4124 0.4702 0.5150

Table 6
Mean power estimates (based on 52 triplets for MD and 51 triplets for ST) for

n= 30 using the data division specific approach

j test d= 0.2 d= 0.5 d= 0.8 d= 1.1 d= 1.4 d= 1.7 d= 2.0
statistic

-0.3 MD 0.0925 0.2014 0.3558 0.5297 0.6914 0.8165 0.9009
ST 0.0924 0.2011 0.3550 0.5287 0.6899 0.8029 0.8996

0.0 MD 0.0923 0.2056 0.3543 0.5473 0.7094 0.8303 0.9068
ST 0.0940 0.2096 0.3745 0.5580 0.7233 0.8462 0.9241

0.3 MD 0.0925 0.2015 0.3553 0.5248 0.6782 0.7681 0.8495
ST 0.0926 0.2031 0.3579 0.5283 0.6818 0.7866 0.8827

0.6 MD 0.0851 0.1673 0.2666 0.3622 0.4405 0.4999 0.5431
ST 0.0858 0.1699 0.2714 0.3692 0.4489 0.5091 0.5527



may diverge from the nominal one for each data division. If the
randomization distribution for that specific data division is U-
shaped (as it is for «5.13.19») then the cumulative proportion of
the 11 extreme ranks would be greater than 0.05 and, therefore, the
probability of committing a Type I error would be greater than 5%.
If the randomization distribution is triangular (e.g., «5.14.20») or
bimodal (e.g., «6.11.18»), then rejecting the null hypothesis when
the outcome is assigned one of the 11 extreme ranks would render
the test too conservative and less powerful. Basing the statistical
decision on the common distribution would not be detrimental
only when the randomization distribution is uniform for the
specific data division, as would be the case for «5.16.21». 

Another concern arises from the fact that while studies based
on the common distribution suggest that randomization tests are
not affected by autocorrelation, the data-division-specific
approach shows that this is not always true. The present study
shows that the effect of serial dependence is not the same for all
data divisions and, therefore, robustness studies based on the
common distribution assuming invariability of the eff e c t
provide insufficient information. The matching between
nominal and empirical Type I error rates alleged by common
distribution investigations can be explained by the fact that all
data divisions are mixed, which leads to averaging the
proportions of the ranks assigned to the outcome, and those
ranks are the fundament of the Type I and Type II error
estimates. Mixing triplets does not have any correspondence to
reality as applied researchers make statistical decisions based on
a specific data division in their particular case. By means of the
data-division-specific approach we get to know which the
number of critical ranks is for each specific triplet according to
the shape of the randomization distribution for that triplet.
Therefore, applied researchers still have to select randomly one
of the triplets, but when analyzing data, investigations based on
the data-division-specific approach will inform them about
which are the most appropriate critical ranks for each data
division and what is the probability of committing Type I and
Type II errors using those ranks. 

The similarity between the power estimates obtained via each
of the two approaches is evident. Nevertheless, the consequence of
using, for each data division, the same number of critical ranks (as
suggested by the common approach) has to be emphasized. This
would lead to a very powerful test for some data divisions (with
greater probability for committing a Type I error) and to a more
insensitive test for other data divisions (i.e, increased probability

of Type II errors). Therefore, statistical decision making would
become less reliable.

In this study only designs following the ABAB-structure were
investigated in order to illustrate the disagreement between data-
division-specific and common approaches. However, evidence
from other studies (Manolov & Solanas, 2007) suggests that this
finding is not exclusive to four-phase designs. A more general
limitation applicable to randomization tests is the implicit
assumption that the data series produced by a participant are the
only ones possible. We deem that the measurements originated by
an individual are just a random sample of all possible measurements
that he or she could have generated, something that has no relation
with random sampling of participants from a population.

We consider that, given the evidence presented here and taking
into account the previous investigations mentioned, future
simulation research on randomization tests should be made
employing the data-division-specific approach. This approach is
beyond doubt more time-consuming, but the efforts pay off as the
more detailed information obtained is relevant for a more
profound knowledge of the performance of the statistical
technique studied. It has to be kept in mind that the statistical
properties of randomization tests depend on the specific design
structure (phase order) and data division (individual phase length)
and we agree with Phillips (1983) that the influence of
autocorrelation has to be studied for each design. Therefore, it is
important to obtain information on the performance of
randomization tests for the most frequently used designs in
applied behavioural research in order to know for which data
divisions the technique will be useful in establishing the existence
of treatment effects. 
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