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Exploring how a variable changes over time in different groups 
is a frequent aim in educational and psychological research (e.g., 
exploring differences in cognitive development between boys and 
girls), and in these cases, the study is usually based on a split-plot 
design. Indeed, split-plot designs, namely those in which there are 
one or more grouping factors on which individuals are repeatedly 
measured on two or more occasions, are the most commonly 
used in educational and psychological research (Bono, Arnau, & 
Balluerka, 2007; Keselman et al., 1998). The traditional analytic 
method for these designs is the classical linear model, which is 

valid under certain distributional assumptions (Huynh & Feldt, 
1970; Rouanet & Lepine, 1970): normality, independence of the 
observations, variance homogeneity, and sphericity. However, the 
data from these studies are often not normally distributed (Blanca, 
Arnau, López-Montiel, Bono, & Bendayan, 2013; Micceri, 1989), 
sphericity cannot always be assumed (Huynh, 1978; Jaccard 
& Ackerman, 1985), and, moreover, samples are often small 
(Fernández, Vallejo, Livacic-Rojas, & Tuero, 2010; Keselman 
et al., 1998). In addition to this, Monte Carlo simulation studies 
have demonstrated that when these assumptions are not satisfi ed, 
this approach is mainly not robust. For example, the analysis of 
variance (ANOVA) F-test tends to be liberal (Berkovits, Hancock, 
& Nevitt, 2000; Box, 1954; Collier, Baker, Mandeville, & Hayes, 
1967; Imhof, 1962; Keselman, Lix, & Keselman, 1996; Keselman 
& Rogan, 1980; Rasmussen, 1989; Rogan, Keselman, & Mendoza, 
1979) when sphericity assumption is not satisfi ed; and when 
multisample sphericity is not satisfi ed, F-tests may be liberal or 
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Abstract Resumen

Background: This study examined the independent effect of skewness 
and kurtosis on the robustness of the linear mixed model (LMM), with the 
Kenward-Roger (KR) procedure, when group distributions are different, 
sample sizes are small, and sphericity cannot be assumed. Methods: A 
Monte Carlo simulation study considering a split-plot design involving 
three groups and four repeated measures was performed. Results: The 
results showed that when group distributions are different, the effect 
of skewness on KR robustness is greater than that of kurtosis for the 
corresponding values. Furthermore, the pairings of skewness and kurtosis 
with group size were found to be relevant variables when applying this 
procedure. Conclusions: With sample sizes of 45 and 60, KR is a suitable 
option for analyzing data when the distributions are: (a) mesokurtic and 
not highly or extremely skewed, and (b) symmetric with different degrees 
of kurtosis. With total sample sizes of 30, it is adequate when group 
sizes are equal and the distributions are: (a) mesokurtic and slightly or 
moderately skewed, and sphericity is assumed; and (b) symmetric with 
a moderate or high/extreme violation of kurtosis. Alternative analyses 
should be considered when the distributions are highly or extremely 
skewed and samples sizes are small.

Keywords: Linear mixed model, Kenward-Roger, small samples, skewness, 
sphericity.

El efecto de la violación de simetría y curtosis en la aproximación 
Kenward-Roger cuando las distribuciones de los grupos difi eren. 
Antecedentes: este estudio examina el efecto independiente de la 
violación de la simetría y de la curtosis en la robustez del modelo lineal 
mixto, con la corrección Kenward-Roger de los grados de libertad, 
cuando las distribuciones de los grupos difi eren, los tamaños muestrales 
son pequeños y se viola el supuesto de esfericidad.  Método: se realizó 
un estudio de simulación Monte Carlo con un diseño de tres grupos y 
cuatro medidas repetidas. Resultados: cuando las distribuciones de los 
grupos son diferentes, el efecto de la violación de la simetría es mayor 
que el de la curtosis. Además, el emparejamiento de asimetría y curtosis 
con el tamaño de grupo se constatan como variables a considerar cuando 
se utiliza este procedimiento. Conclusiones: KR constituye una buena 
opción cuando el diseño es equilibrado, y (a) los tamaños muestrales 
totales son iguales a 45 o 60, y las distribuciones son mesocúrticas y no 
extremadamente asimétricas, o bien, simétricas con distintos grados de 
violación de curtosis; o (b) con tamaños muestrales de 30 y distribuciones 
mesocúrticas y leve/moderadamente asimétricas, o bien, simétricas 
con una violación moderada/extrema de la curtosis. Con estos tamaños 
muestrales y distribuciones severa o extremadamente asimétricas no es 
recomendable utilizar KR.

Palabras clave: Modelo Lineal Mixto, Kenward-Roger, muestras pequeñas, 
asimetría, esfericidad.
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conservative, depending on the type of pairing of the covariance 
matrices and group sizes (Keselman et al., 1996). 

The linear mixed model (LMM; Cnaan, Laird, & Slasor, 1997; 
Laird & Ware, 1982; Littell, Milliken, Stroup, & Wolfi nger, 1996) 
is one of the most suitable approaches for analyzing data from split-
plot designs when the assumptions of ANOVA with within-subject 
and between-subject factors are not met. The LMM approach uses 
statistics that have good large-sample properties, but this approach 
is not appropriate when samples are small (Wright & Wolfi nger, 
1996). Small sample properties can be improved by procedures 
that adjust the degrees of freedom, for example, the method 
developed by Kenward and Roger (KR; 1997).

Over the last decade, several simulation studies have explored 
the robustness of the LMM with the KR procedure when the 
assumptions of this model are not met. In this context, robustness 
is usually assessed by applying Bradley’s (1978) liberal criterion, 
according to which a test is robust when the empirical Type I error 
rate is between .025 and .075 for α = .05. Monte Carlo simulation 
studies have found that, for the repeated measures effect, the 
KR procedure is robust to variance heterogeneity with assumed 
sphericity and different violations of normality (Kowalchuk, 
Keselman, Algina, & Wolfi nger, 2004; Livacic-Rojas, Vallejo, & 
Fernández, 2006, 2010; Vallejo, Fernández, Herrero, & Conejo, 
2004). With respect to the interaction effect, the results are 
inconsistent. On the one hand, with known non-normal distributions 
and sphericity assumed, Kowalchuk et al. (2004) reported that 
the procedure was robust when the distribution was log-normal, 
whereas Vallejo et al. (2004) found it to be conservative with chi-
square distributions with three degrees of freedom. On the other 
hand, with unknown non-normal distributions, KR has been found 
to be robust (Livacic-Rojas et al., 2010), conservative (Livacic-
Rojas et al., 2006, 2010) or liberal (Vallejo & Ato, 2006). 

With regard to the effect of skewness and kurtosis, previous 
research has highlighted that the two phenomena have a different 
effect on the robustness of several statistical tests (Lei & Lomax, 
2005). Some studies have found that the effect of kurtosis is greater 
than that of skewness (Harwell, Rubinstein, Hayes, & Olds, 1992; 
Hopkins & Weeks, 1990), whereas other studies have reported the 
opposite (Chaffi n & Rhiel, 1993; Scheffé, 1959). Recent studies have 
also pointed out the differential effect of skewness and kurtosis on 
KR robustness (Arnau, Bono, Blanca, & Bendayan, 2012; Arnau, 
Bendayan, Blanca, & Bono, 2013). Arnau, Bono et al. (2012) 
explored KR robustness with log-normal, exponential, and double 
exponential distributions when the assumptions of sphericity and 
variance homogeneity were not jointly met. They found that, for 
both the repeated measures and interaction effects, KR was less 
robust when the distribution was log-normal, in which case it was 
nearly always liberal when the sphericity assumption was not met. 
Their fi ndings also suggested that skewness could have a greater 
effect than kurtosis on KR robustness. Arnau et al. (2013) explored 
the independent effect of skewness and kurtosis on KR robustness 
and found, in general, that the effect of skewness was greater 
than the corresponding effect of kurtosis. More specifi cally, their 
fi ndings highlighted that KR was a good option for analyzing 
total sample sizes of 45 or larger when distributions are normal or 
slightly or moderately skewed, whereas the procedure was mainly 
liberal with sample sizes of 30. 

All the cited studies have considered that the distributions of 
the groups were exactly the same, although this may not be the 
case with real data (Harwell et al., 1992; Olson, 1974; Tiku, 1964). 

To date, only one study on KR robustness has simulated data with 
different distributions in each group (Arnau, Bendayan, Blanca, & 
Bono, 2012). These authors examined KR robustness with sample 
sizes of 30 and moderately skewed distributions, fi nding that KR 
was mainly liberal for both the repeated measures and interaction 
effects. Whereas this study examined the effect of skewness 
and kurtosis jointly on KR robustness, the independent effect of 
skewness and kurtosis when group distributions differ has yet to 
be explored. Consequently, the purpose of the present study was to 
examine the independent effect of skewness and kurtosis on KR 
robustness when group distributions are different, sample sizes 
are small, and sphericity cannot be assumed. 

Linear mixed model and the Kenward-Roger procedure

The LMM allows researchers to include random factors and 
to model the covariance structure of their data prior to testing the 
treatment effects. In general, the LMM described by Laird and 
Ware (1982) can be written as in (1):

 y = Xβ + Zu + e (1)

where y is the observations vector, X is the matrix for the fi xed 
effects model, β is the vector of the fi xed effects parameters, Z 
is the matrix for the random effects model, u is the vector of the 
random effects parameters, and e is the vector of random errors. 

The distribution assumptions of this model are that u and e 
are independent random vectors distributed as u ~ N(0,G) and e ~ 
N(0,R), respectively, where G is a matrix of unknown covariance 
parameters for the between-subjects random effects and R is a 
covariance matrix for the within-subjects errors. As u and e 
are independent vectors, their covariance is equal to 0 and the 
covariance matrix of y is V = ZGZ’ + R.

The matrices G and R are usually unknown and, consequently, 
an estimate of V must be used. The residual maximum likelihood 
estimation is often used to estimate V (Zimmerman & Núñez-
Antón, 2001), as in (2):

 
V̂ = V( ˆ) = (X'V-1X)-  (2)

Once the covariance matrix has been selected and its parameters 
estimated, β is estimated through the generalized least squares 
estimator, as in (3):

 ˆ = (X' V̂ -1X)-1X' V̂ -1y  (3)

However, the true variance of β̂ is not (X’V-1X)– because β̂  
contains variation due to V̂, so it is not always a good estimate of 
V (Littell, 2002). As Vallejo et al. (2004) highlighted, this means 
that the likelihood-based inference should be interpreted with 
caution when the sample size is not large enough. As mentioned, 
small sample properties can be improved by procedures that 
adjust the degrees of freedom, for example, the KR procedure. 
This procedure provides an adjusted estimator of the covariance 
matrix of β that reduces the bias for small sample inference when 
the asymptotic covariance matrix underestimates V̂.

Here, the LMM uses Wald-type statistics that can be defi ned 
as in (4):
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W = (C )'(C(X'V-1X)-1C')-1 (C ˆ )  (4)

where C is a contrast matrix with range q, and the Wald F for the 
hypothesis H

0
: Cβ = 0 is F = W /q.

If we calculate a scale factor δ and an approximate value for 
the degrees of freedom ν, then the F statistic for the KR method 
is given by (5):

 F* = FKR =
q
(C ˆ )' (C(X' V-1X)-1C')-1 (C ˆ )'

 (5)

The moments of F* are generated and matched to the moments 
of the distribution F so as to solve δ and ν. Under the null 
hypothesis, it is assumed that F* is approximately distributed in 
the same way as F, with q degrees of freedom in the numerator 
and ν degrees of freedom in the denominator. This means that two 
values have to be calculated from the data: the degrees of freedom 
in the denominator ν and a scale factor δ following (6), (7) and 
(8). Thus,

 = 4 +
q + 2
qy -1  (6)

 
where,

 y =
V FKR[ ]

2E FKR[ ]
2

 (7)
 

and,
 

 =
E FKR[ ] -2( )  (8)

Method

A Monte Carlo simulation study was designed to examine the 
independent effect of skewness and kurtosis on KR robustness 
when group distributions are different, sample sizes are small, and 
sphericity cannot be assumed. The variables manipulated were as 
follows: (a) total sample size and group size; (b) distributional shape 
of the response variable; (c) sphericity; (d) pairing of skewness 
with group size; and (e) pairing of kurtosis with group size.

(a) Total sample size and group size. Total sample sizes of 
N = 30, 45, and 60 were considered because these are the most 
frequently used in behavioral and educational research (Keselman 
et al., 1998; Livacic-Rojas et al., 2006; Fernández et al., 2010). 
For each value of N, both equal and unequal group sizes were 
considered. Unequal group sizes, in which the number of 
individuals decreases, were considered because unbalanced data 
due to experimental mortality is very common in longitudinal 
studies (Keselman et al., 1998). Specifi cally, with unequal group 
size, the coeffi cient of sample size variation, Δn

j
, was. 33, while 

the group sizes were as follows: 14, 10, 6 (N = 30); 21, 15, 9 (N = 
45); and 28, 20, 12 (N = 60). When the group sizes were equal,  Δn

j 

= 0, the group sizes were 10, 10, 10 (N = 30); 15, 15, 15 (N = 45); 
and 20, 20, 20 (N = 60).

(b) Distributional shape of the response variable. In order to 
explore the differential effect of skewness (γ

1
) and kurtosis (γ

2
) 

on KR robustness, several distributional shapes of the response 
variable were considered. Different values of the γ

1
 and γ

2
 

coeffi cients were chosen based on the results of a recent study that 
assessed the distributional shape of real data by examining the 
values of γ

1
 and γ

2
 in small samples of educational and behavioral 

research data (Blanca et al., 2013). This study revealed that γ
1
 

usually ranges between -2.49 and 2.33, while γ
2
 usually ranges 

between -1.92 and 7.41. The values of the γ
1
 and γ

2
 coeffi cients 

were chosen according to the cut-off points for the typical degree 
of contamination found in this type of data, as proposed by 
Blanca et al. (2013). The studied conditions were labeled as slight, 
moderate, and high/extreme contamination when at least two of 
the distributions had values representing slight, moderate, and 
high/extreme contamination according to the criteria of Blanca et 
al. (2013). The values used to explore the effect of skewness and 
kurtosis are shown in Tables 1 and 2, respectively.

(c) Sphericity. In order to analyze KR robustness to violations 
of normality and sphericity jointly, two indices of sphericity were 
used: a value of ε = .75 was taken as a good approximation to 
sphericity, while ε = .57 was used to represent non-sphericity.

(d) Pairing of kurtosis with group size. The type of pairing 
between kurtosis and group size has been shown to be a relevant 
variable to consider when using this procedure (Arnau, Bendayan, 
et al., 2012). The type of pairing between kurtosis and group size 
was defi ned as one of the following: null, positive, or negative. 
Pairing was null when group sizes were equal. Pairing was 
positive when the largest group was associated with the largest 
value of the γ

2 
coeffi cient and the smallest group was associated 

with the smallest value of the γ
2 
coeffi cient. Pairing was negative 

when the largest group was associated with the smallest value of 
the γ

2 
coeffi cient and the smallest group was associated with the 

largest value of the γ
2 
coeffi cient.

(e) Pairing of skewness with group size. The type of pairing 
between skewness and group size was defi ned as one of the 
following: null (when group sizes were equal), positive (when 
the largest group was associated with the largest value of the 
γ

1 
coeffi cient and the smallest group was associated with the 

Table 1
Values of γ

1 
used to explore the effect of skewness (γ

2
 = 0)

Slight Moderate High/Extreme

g1: γ
1
 = 0.2

g2: γ
1
 = 0.3

g3: γ
1
 = 0.4

g1: γ
1
 = 0.4

g2: γ
1
 = 0.9

g3: γ
1
 = 1.2

g1: γ
1
 = 0.8

g2: γ
1
 = 1.8

g3: γ
1
 = 2.4

Note: g
j
: group; γ

1
:skewness; γ

2
: kurtosis

Table 2
Values of γ

2 
used to explore the effect of kurtosis (γ

1
 = 0)

Slight Moderate High/Extreme

g1: γ
2
 = 0.4

g2: γ
2
 = 0.8

g3: γ
2
 = 1.6

g1: γ
2
 = 0.8

g2: γ
2
 = 2.4

g3: γ
2
 = 7.2

g1: γ
2
 = 0.8

g2: γ
2
 = 3.2

g3: γ
2
 = 12

Note: g
j
: group; γ

1
:skewness; γ

2
: kurtosis
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smallest value of the γ
1 
coeffi cient), or negative (when the largest 

group was associated with the smallest value of the γ
1 
coeffi cient 

and the smallest group was associated with the largest value of the 
γ

1 
coeffi cient).
Data were generated using a series of macros created ad hoc in 

SAS 9.2 (SAS Institute, 2008), following the same procedure used 
in Arnau, Bono, et al. (2012). Moreover, all data were generated 
assuming variance homogeneity and using the unstructured (UN) 
covariance structure, as several studies recommend this approach 
when the number of observations is moderate or sample sizes 
are small (Chen & Wei, 2003; Kowalchuk et al., 2004). Recent 
research has also indicated that some of the standard criteria used 
to select the covariance structure in linear mixed models through 
PROC MIXED (e.g., the Akaike Information Criterion) fail to 
select the true covariance structure when sample sizes are small 
(Vallejo, Fernández, Livacic-Rojas, & Tuero-Herrero, 2011). Here, 
ten thousand replications were performed for each combination 
at a signifi cance level of .05 (Bendayan, Blanca, Arnau, & Bono, 
2014; Robey & Barcikowsky, 1992).

Results

Robustness was determined according to Bradley’s criterion, 
whereby the effect estimate is robust when the empirical Type I 
error rate is between .025 and .075 for α = .05. A test is considered 
to be liberal when the empirical Type I error rate is above the 
upper limit, and conservative when it is below the lower limit.

General results

In general, the results show that the effect of skewness on KR 
robustness seems to be greater than the corresponding effect of 
kurtosis. For the repeated measures effect, the overall percentage 
of KR robustness when the data are skewed (59.25%) is lower 
than the overall percentage of KR robustness when the data have 
different degrees of kurtosis violation (94.44%). For the interaction 
effect, the overall percentage of KR robustness when the data 
are skewed (51.85%) is also lower than the overall percentage of 
KR robustness when the data have different degrees of kurtosis 
violation (79.63%). 

With regards to the effect of the violation of the sphericity, 
for the repeated measures effects, the overall percentage of KR 
robustness when sphericity cannot be assumed (70.37%) is lower 
than the overall percentage of KR robustness when sphericity 
can be assumed (83.33%). For the interaction effect, the overall 
percentage of KR robustness when sphericity cannot be assumed 
(64.81%) is slightly lower than the overall percentage of KR 
robustness when sphericity can be assumed (66.66%). As can 
be seen in Tables 3 and 4, the slight effect of sphericity on KR 
robustness appears to be associated with the smaller total sample 
size (i.e., N = 30). In fact, the results highlight the effect of the 
total sample size on KR robustness. For the repeated measures 
effects, the overall percentage of robustness of KR when the 
total sample size is equal to 30 (61.11%) is lower than the overall 
percentage of robustness of KR when the total sample size is 
equal to 45 or 60 (84.72%). For the interaction effect, the overall 
percentage of robustness of KR when the total sample size is 
equal to 30 (22.22%) is lower than the overall percentage of 
robustness of KR when the total sample size is equal to 45 or 
60 (87.5%). 

Specifi c results

Skewness effect. Table 3 shows that, for the repeated measures 
effect, KR is mainly robust with total sample sizes of 45 and 
60 when the distributions are slightly or moderately skewed, 
independently of whether or not sphericity can be assumed. With 
a total sample size of 30 and slightly skewed distributions, KR is 
robust when sphericity is assumed, but tends to be liberal when 
sphericity cannot be assumed, especially when the group sizes are 
not equal. With a total sample size of 30 and moderately skewed 
distributions, KR is robust when sphericity is assumed, except when 
the pairing of skewness with group size is negative (the largest 
group is associated with the smallest value of the γ

1 
coeffi cient 

and the smallest group is associated with the largest value of the 
γ

1 
coeffi cient). A similar pattern is found when sphericity is not 

assumed. A great decrease in KR robustness is found when the 
distributions are highly or extremely skewed, with the procedure 
being liberal for all the total sample sizes considered and, in 
general, independently of sphericity. Under these conditions, the 
procedure is only robust with total sample sizes of 45 and 60 when 
sphericity is assumed and the pairing of skewness with group size 
is positive (the largest group was associated with the largest value 
of the γ

1 
coeffi cient and the smallest group was associated with the 

smallest value of the γ
1 
coeffi cient).

For the interaction effect, KR is robust with total sample sizes of 
45 and 60 when the distributions are slightly or moderately skewed, 
regardless of whether or not sphericity can be assumed. However, 
with a total sample size of 30, KR is liberal when the distributions 
are slightly or moderately skewed, independently of whether or not 
sphericity can be assumed or not. As in the case of the repeated 
measures effect, a great decrease in KR robustness is found when 
the distributions are highly or extremely skewed, with the procedure 
being liberal for all the total sample sizes considered and, in general, 
independently of sphericity, except when the pairing of skewness 
with group size is positive with a total sample size of 60. 

Kurtosis effect. Table 4 shows that, for the repeated measures 
effect, KR is robust in nearly all the studied conditions. The 
procedure is liberal only when the total sample size is 30, 
the pairing of skewness with group size is positive, and the 
distributions have either a moderate or a high/extreme degree of 
kurtosis. For the interaction effect, KR is mainly robust in all the 
studied conditions with total sample sizes of 45 and 60. However, 
it tends to be liberal with a total sample size of 30.

Discussion

The purpose of this study was to examine the independent 
effect of skewness and kurtosis on KR robustness when group 
distributions are different, samples sizes are small, and sphericity 
cannot be assumed. 

In general, the effect of skewness on KR robustness when group 
distributions differ appears to be greater than that of kurtosis for 
the corresponding values. This is consistent with the results of 
previous studies in which all the group distributions were the same 
(Arnau, Bono, et al., 2012; Arnau et al., 2013). Our results also 
suggest that the effect of skewness on KR may depend on whether 
or not sphericity can be assumed when the total sample size is 
equal to 30, the procedure being less robust when this assumption 
was not satisfi ed. As the present study is the fi rst to explore 
the independent effect of skewness and kurtosis when group 
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distributions differ, its results cannot be directly compared to other 
studies with different conditions. Nevertheless, our fi ndings can 
be regarded as partially coincident with those of other studies that 
considered the violation of sphericity and normality jointly, and 
which examined either equal group distributions (Arnau, Bono, 
et al., 2012; Arnau et al., 2013; Vallejo & Ato, 2006) or different 
ones (Arnau, Bendayan, et al., 2012). Further studies are needed 
to explore the differential effect of sphericity and normality with 
other total sample sizes than were examined here. 

With regard to the effect of skewness, and for both the repeated 
measures and interaction effects, KR was robust with total 
sample sizes of 45 and 60 when the distributions were slightly or 
moderately skewed, independently of whether or not the sphericity 
assumption was violated. However, with total sample sizes of 
30, KR was often liberal when the distributions were slightly 
or moderately skewed. When the distributions were highly or 
extremely skewed, KR was mainly liberal for both the repeated 
measures and interaction effects, independently of total sample 
size or violation of the sphericity assumption. The pairing of 
skewness with group size only appeared to be a relevant variable 
when total sample size was 60, with the KR procedure being more 
robust when pairing was positive and sphericity was assumed.

With regard to the effect of kurtosis, and for both the repeated 
measures and interaction effects, KR was robust with total sample 
sizes of 45 and 60, independently of the degree of kurtosis, the 
assumption of sphericity, or whether or not the groups were 
balanced. However, with a total sample size of 30, KR tends to be 
liberal for both effects.

Although the shape of the distribution, the sphericity assumption, 
and the total sample size are relevant variables to consider when 
applying the LMM with the KR procedure to educational and 
psychological research data, the results suggest, in line with 
previous studies (Arnau, Bendayan, et al., 2012; 2013), that it is 
also necessary to take into account the pairing of skewness and 
kurtosis with group size. It would be interesting in future research 
to explore the effect of both these types of pairings. 

Furthermore, the percentage of KR robustness is lower for the 
interaction effect than for the repeated measures effect, which 
is especially relevant in the case of repeated measures designs 
(Livacic et al., 2010). It should also be noted that although the KR 
procedure is usually proposed as a valid alternative for analyzing 
data from split-plot designs with small samples, the present results 
suggest that it may not be the best option for analyzing this type 
of data. 

Table 3
Empirical type I error rates for the repeated measures and interaction effects (nominal value 0.05) with respect to skewed data

Degree of skewness contamination

Pairing of 
skewness with 

group size

Slight Moderate High/Extreme

g1: γ1 = 0.2
g2: γ1 = 0.3
g3: γ1 = 0.4

g1: γ1 = 0.4
g2: γ1 = 0.9
g3: γ1 = 1.2

g1: γ1 = 0.8
g2: γ1 = 1.8
g3: γ1 = 2.4

ε = 0.57 ε = 0.75 ε = 0.57 ε = 0.75 ε = 0.57 ε = 0.75

N n
1

n
2

n
3

Δn
j

Repeated measures effect

30 10 10 10 0.00 0.074 0.070 0.077 0.072 0.138 0.123

45 15 15 15 0.00 0.070 0.064 0.063 0.065 0.111 0.103

60 20 20 20 0.00 0.067 0.059 0.059 0.061 0.103 0.104

30 6 10 14 0.33 + 0.077 0.072 0.074 0.070 0.110 0.099

45 9 15 21 0.33 + 0.066 0.068 0.062 0.062 0.081 0.071

60 12 20 28 0.33 + 0.064 0.063 0.054 0.059 0.076 0.057

30 14 10 6 0.33 – 0.078 0.074 0.082 0.081 0.158 0.154

45 21 15 9 0.33 – 0.070 0.065 0.076 0.070 0.164 0.146

60 28 20 12 0.33 – 0.061 0.061 0.067 0.070 0.154 0.143

Interaction effect

30 10 10 10 0.00 0.087 0.080 0.081 0.079 0.105 0.102

45 15 15 15 0.00 0.067 0.067 0.072 0.068 0.089 0.093

60 20 20 20 0.00 0.063 0.060 0.061 0.063 0.086 0.081

30 6 10 14 0.33 + 0.079 0.079 0.075 0.077 0.086 0.081

45 9 15 21 0.33 + 0.064 0.066 0.068 0.067 0.070 0.061

60 12 20 28 0.33 + 0.065 0.062 0.062 0.062 0.062 0.058

30 14 10 6 0.33 – 0.080 0.079 0.079 0.080 0.119 0.125

45 21 15 9 0.33 – 0.069 0.064 0.071 0.072 0.123 0.125

60 28 20 12 0.33 – 0.065 0.064 0.072 0.066 0.124 0.123

Note: N: total sample size; n
j
:group sample size; Δn

j
: coeffi cient of sample size variation; Δ: sphericity; g

j
:group; γ

1
: skewness; γ

2
: kurtosis; + -: positive and null group size-skewness pairing. 

In bold: liberal
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In summary, the results enable several recommendations to be 
made regarding application of the LMM with the KR procedure 
to explore how a variable changes over time in different groups 
(e.g., exploring the differences in cognitive development between 
boys and girls). Real data often show different distributions 
in each group (Harwell et al., 1992; Olson, 1974; Tiku, 1964), 
and if this is the case, the KR procedure seems to be adequate 
when the distributions are not highly or extremely skewed 
and total sample sizes are 45 or larger. Specifi cally, with total 
sample sizes of 45 or larger, the LMM with the KR procedure 
is a suitable option for analyzing data when the distributions 
are: (a) mesokurtic and not highly or extremely skewed; and (b) 
symmetric, with different degrees of kurtosis. With total sample 

sizes of 30, the KR procedure is adequate when group sizes are 
equal and the distributions are: (a) slightly or moderately skewed 
and mesokurtic, with the sphericity assumption being met; and (b) 
symmetric with a moderate or high/extreme violation of kurtosis. 
Alternative analyses should be considered when the distributions 
are highly or extremely skewed and the total sample size is 60 or 
smaller, as well as when the total sample size is 30 and group sizes 
are unequal.
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Table 4
Empirical type I error rates for the repeated measures and interaction effects (nominal value 0.05), using data with different kurtosis coeffi cients

Degree of kurtosis contamination

Pairing of kurtosis 
with group size

Slight Moderate High/Extreme

g1: γ2 = 0.4
g2: γ2 = 0.8
g3: γ2 = 1.6

g1: γ2 = 0.8
g2: γ2 = 2.4
g3: γ2 = 7.2

g1: γ2 = 0.8
g2: γ2 = 3.2
g3: γ2 = 12

ε = 0.57 ε  = 0.75 ε  = 0.57 ε  = 0.75 ε  = 0.57 ε  = 0.75

N n1 n2 n3 Δnj

Repeated measures effect

30 10 10 10 0.00 0.068 0.069 0.067 0.069 0.063 0.067

45 15 15 15 0.00 0.061 0.062 0.064 0.062 0.063 0.063

60 20 20 20 0.00 0.060 0.060 0.055 0.058 0.061 0.053

30 6 10 14 0.33 + 0.072 0.073 0.075 0.071 0.080 0.080

45 9 15 21 0.33 + 0.069 0.068 0.070 0.067 0.074 0.072

60 12 20 28 0.33 + 0.060 0.059 0.064 0.060 0.067 0.065

30 14 10 6 0.33 – 0.071 0.072 0.063 0.064 0.051 0.058

45 21 15 9 0.33 – 0.065 0.066 0.060 0.056 0.055 0.058

60 28 20 12 0.33 – 0.058 0.059 0.054 0.057 0.051 0.054

Interaction effect

30 10 10 10 0.00 0.078 0.077 0.074 0.074 0.074 0.073

45 15 15 15 0.00 0.068 0.069 0.064 0.064 0.065 0.064

60 20 20 20 0.00 0.056 0.051 0.055 0.054 0.058 0.056

30 6 10 14 0.33 + 0.078 0.083 0.086 0.089 0.085 0.085

45 9 15 21 0.33 + 0.068 0.069 0.068 0.066 0.075 0.071

60 12 20 28 0.33 + 0.061 0.061 0.065 0.060 0.064 0.063

30 14 10 6 0.33 – 0.076 0.075 0.074 0.070 0.067 0.064

45 21 15 9 0.33 – 0.066 0.064 0.063 0.063 0.057 0.058

60 28 20 12 0.33 – 0.058 0.058 0.049 0.060 0.050 0.050

Note: N: total sample size; n
j
:group sample size; Δn

j
: coeffi cient of sample size variation; Δ: sphericity; g

j
:group; γ

1
: skewness; γ

2
: kurtosis; + -: positive and null group size-kurtosis pairing. 

In bold: liberal
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