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Since 1994, the American Psychological Association (APA) 
has recommended reporting an effect-size measure along with 
each test of statistical signifi cance (APA, 1994), which is usually 
evaluated according to the levels proposed by Cohen (1988) for a 
small, medium, or large effect size. After a report by Cohen (1994) 
on statistical signifi cance, and the revision of empirical studies 
that showed the minor infl uence of the APA recommendation 
on scientifi c reports published (e.g., Keselman et al., 1998; 
Kirk, 1996), the Task Force on Statistical Inference stressed the 
importance of reporting and interpreting effect-size statistics to 
improve scientifi c quality (Wilkinson & the APA Task Force on 

Statistical Inference, 1999). Later editions of the APA Publication 
Manual (2001; 2010) included this recommendation. However, a 
review of articles published between 2005 and 2007 revealed that 
fewer than half (40%) of the reported analyses in APA journals 
included an effect-size measure, of which only 51% interpreted 
the reported index (Sun, Pan, & Wang, 2010). Similar results were 
obtained with articles published in 2009 and 2010, due to the lack 
of appropriate effect-size measures for ANOVA-related analysis, 
such as simple effects, post-hoc comparisons, and planned 
contrasts (Fritz, Morris, & Richler, 2011). The current situation 
can be explained by a range of causes.

First of all, a large number of researchers have failed to realize 
both the relevance of effect sizes, and the very different information 
they provide to that obtained from statistical signifi cance. Rosnow 
and Rosenthal (2009, pp. 1) summarize the relation between the 
statistical signifi cance, effect sizes, and sample sizes:

Signifi cance test = Size of effect × Size of study
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Background: Psychological and educational researchers are experiencing 
many practical diffi culties in following the guidelines of the American 
Psychological Association (APA) for their statistical analyses: one such 
diffi culty is the reporting of an effect-size measure along with each test 
of statistical signifi cance (APA, 2010). The problem is exacerbated when 
researchers focus on contrast analysis instead of omnibus tests and when 
the Type-I error rate per comparison has to be adjusted. Method: Several 
reasons for this problem are discussed, with emphasis on the facts that 
researchers may be presented with too many optional effect-size measures 
with varying degrees of adequacy in several designs, and common 
statistical packages fail to provide appropriate effect-size measures for 
contrast analysis. Results: This study proposes specifi c procedures (also 
implemented in spreadsheets) to compute generalized eta squared for 
various kinds of hypotheses, either general or specifi c, for one-factor and 
factorial between-group designs, and with manipulated and/or measured 
factors. Conclusions: Finally, conclusions are drawn concerning the 
need to take into account the kind of design and the kind of hypothesis in 
order to calculate comparable effect-size indexes across different types of 
studies and to prevent an overestimation of effect size.

Keywords: APA guidelines, effect size, generalized eta squared, contrast 
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Eta cuadrado generalizado para comparaciones múltiples en diseños 
entregrupos. Antecedentes: los investigadores en Psicología y Educación 
están teniendo muchas difi cultades prácticas para seguir la directriz de 
la Asociación Americana de Psicología (APA) de aportar una medida de 
tamaño de efecto junto con cada prueba de signifi cación (APA, 2010). 
El problema se agrava cuando se realizan contrastes a priori en lugar de 
pruebas ómnibus y cuando la tasa de error de Tipo I por comparación tiene 
que ser ajustada. Método: se discuten diversas razones para ello, como la 
existencia de muchas medidas diferentes de tamaño de efecto y el hecho 
de que los paquetes estadísticos comunes como SPSS no proporcionan 
medidas apropiadas para las comparaciones múltiples. Resultados: se 
proponen procedimientos específi cos (también implementados en hojas 
de cálculo) para calcular el índice eta cuadrado generalizado para diversos 
tipos de hipótesis, generales o específi cas; tipos de diseños, univariables 
o factoriales; y con factores manipulados y/o medidos. Conclusiones: 
fi nalmente se concluye sobre la necesidad de tener en cuenta el tipo de 
diseño y el tipo de hipótesis para obtener índices de tamaño de efecto 
comparables entre diferentes tipos de investigaciones y que eviten una 
sobreestimación del mismo.

Palabras clave: recomendaciones de la APA, tamaño de efecto, eta 
cuadrado generalizado, comparaciones a priori, comparaciones a 
posteriori.
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This relation makes it clear that, with a small effect (not zero), an 
increase in the number of observations can produce a statistically 
signifi cant result. It also clarifi es the importance of performing a 
power analysis before collecting data to guarantee that statistical 
signifi cance can be reached with a determined effect size if an 
adequate sample size is used. Reaching an adequate sample size 
is especially relevant, as the power of a large amount of research 
studies in Psychology is under the convenient 1 - β = .80 (Cohen, 
1992; Sedlmeier & Gigerenzer, 1989; Valera, Sánchez, & Marín, 
2000). Another useful application for effect-size measures is 
that, by interpreting them jointly with statistical signifi cance, 
researchers can distinguish between results of a more confi dent 
nature, when both indexes lead to the same conclusion, and other 
situations that suggest possible threats to the statistical conclusion 
validity of the study, when a discrepancy arises between both 
indexes. 

A second possible cause is that the good practice to systematically 
report effect-size indexes is been obstructed by the use of some 
statistical packages, such as SPSS, because their output cannot 
provide appropriate effect-size measures. With certain versions 
of the package and certain designs, there is also some confusion 
between what is claimed to be reported, eta squared, and what 
is actually reported, partial eta squared (Levine & Hullett, 2002; 
Pierce, Block, & Aguinis, 2004).

Finally, researchers may be presented with too many optional 
effect-size measures with varying degrees of adequacy in several 
designs (Ferguson, 2009). For example, Kirk (1996) identifi ed 
40 different measures. Therefore, recommending a single index 
would constitute the fi rst step towards rendering the reporting 
and interpreting of effect-size statistics a more frequent practice. 
To this end, η2, also known as the correlation ratio or R2, is the 
most common measure reported by researchers in Psychology and 
Education because it is the index provided by common statistical 
packages, such as SPSS (Pierce et al., 2004). In a between-group 
design, eta squared is usually computed as:

 η2 = SSEffect/SSTotal (1)

where SSEffect is the sum of squares for the factor, and SSTotal is 
the total sum of squares. In designs of greater complexity, however, 
with more than one factor, a different effect-size measure can be 
identifi ed for each factor. This is the objective of the partial eta 
squared:

 η2
P
 = SSEffect/(SSEffect + SSError) (2)

where SSError is the subjects-within-cells sum of squares, also 
named within-group sum of squares. 

Olejnik and Algina (2003) have provided researchers 
with a generalized form of eta squared that integrates the two 
aforementioned indexes and can be used in designs with one or 
more measured or manipulated factors (p. 437):

G
2
=

SSEffect
SSEffect + SSMeasured + SSSubjects /Cov'  (3)

where SSEffect refers to the sum of squares for the factor for which 
the effect-size statistic is computed; SSMeasured refers to the sums 
of squares for all the blocking factors or interactions with blocking 
factors; SSSubjects/Cov includes the sums of squares involving 

subjects or covariates, equal to SSError in a between-group design; 
δ = 1 if the effect of interest is a manipulated factor; and δ = 0 if 
it is a measured factor. Olejnik and Algina (2003) generated the 
adequate formulas for three-factor designs with manipulated or 
measured factors, and Bakeman (2005) emphasized the application 
of these formulas in repeated measures designs, with a single factor 
or multiple factors. The application of this general formula for 
different research hypotheses (contrast analysis, omnibus test, and 
post-hoc comparisons) on between-group designs is exemplifi ed 
below.

One-factor between-group design

The main issue concerning effect-size measures in one-factor 
between-group designs has to do with the type of research hypothesis 
and tests: omnibus tests to prove a general hypothesis, or contrast 
analysis to prove hypotheses about the differences between at least 
two levels of the independent variable. Consequently, we must 
report omnibus or targeted effect-size indexes (Kelley & Preacher, 
2012). The APA Publication Manual (2010) explicitly recognizes 
the importance of these targeted effect-size statistics by saying that 
“Multiple degree-of-freedom effect-size indicators are often less 
useful than effect-size indicators that decompose multiple degree-
of-freedom tests into meaningful one degree-of-freedom effects.” 
(p. 34)

Orthogonal contrasts on a manipulated factor

Let the focus of study be on research in Sport Psychology1 
that analyses the relationship between start reaction time (DV) 
and the type of feedback used (IV) while training 24 athletes: 
without feedback (a1

 
: 0%); with continuous feedback (a2: 100%); 

with a progressive decrease in feedback from 100% to 0% (a3: 
progressive); and with self-regulated feedback (a4: self-regulated). 
Table 1 shows example data for this study.

Let us also suppose the following specifi c hypotheses derived 
from the theoretical background: 1) the reaction time will be 
shorter with feedback (a2, a3, and a4) than without feedback (a1), 
because the lack of feedback impedes learning; 2) continuous 
feedback (a2) will lead to a longer reaction time than intermittent 
feedback (a3 and a4) because the latter is more similar to the testing 
situation; and 3) considering the two intermittent feedbacks, the 
reaction time will be shorter when the feedback is planned by the 
trainer (a3) than by the athlete (a4). Such comparisons constitute 
an orthogonal group of Helmert contrasts, and there are several 

Table 1
Example data a

Gender b a1: 0% a2: 100%
a3: progressive 

50%
a4: self-

regulated

Men
Men
Men

Women
Women
Women

385
387
393
375
369
383

374
375
385
371
360
373

358
372
345
359
358
356

370
371
359
373
386
367

a Data fabricated to illustrate calculations
b Gender will be used later as a second factor in a 4 × 2 factorial design. SPSS data fi les are 
available at http://personal.us.es/trigo/suppmaterials.htm
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advantages to using this kind of comparisons. First of all, each 
contrast addresses a different and non-overlapped question. 
Second, since the number of comparisons in an orthogonal group 
is limited by the degrees of freedom of the variable, several classic 
authors on Experimental Designs consider it unnecessary to adjust 
the alpha level per contrast (e.g. Keppel, 1991; Keppel & Zedeck, 
1989; Kirk, 1995). The introduction of adequate coeffi cients for 
these contrasts in SPSS (e.g. C1: 3, -1, -1, -1; C2: 0, 2, -1, -1; and 
C3: 0, 0, 1, -1) provides us with ANOVA and the contrast tests 
summarised in Table 22.

Application of the general formula by Olejnik and Algina 
(2003) to the planned contrasts on our manipulated factor (δ = 1;  
ΣSSMeasured = 0; ΣSSSubjects/Cov = SSError) yields the usual 
partial eta squared formula for a contrast:

 G-C
2

=
SSContrast

SSContrast + SSError  (4)

The main inconvenience is that SPSS neither provides this 
index nor the sums of squares associated to each contrast, except 
for polynomials. To solve the gap, the sums of squares of the 
contrasts can be generated from n, coeffi cients (a) and means:

SSContrast =
n ay( )

2

a2  (5)

For the third contrast:3

SSC3 =
6[(0)(382) + (0)(373) (+1) (358)+ ( 1)(371)]2

(0)2 + (0)2 + (1)2 + ( 1)2
= 507.00

 

or from t values and the mean squared error:

 SSContrast = t2 * MSError (6)

 SS
C3

 = -2.642 * 72.80 ≈ 507.00

Therefore, by applying Equation 4:

 G-C 3
2

=
507.00

507.00 +1456.00
= .26

 

Another equivalent procedure to obtain this effect-size index 
for a contrast on a manipulated factor consists of computing it 
directly from the F or t value (Cohen, 1973):

p
2
=

dfEffect FEffect
dfEffect FEffect+ dfError  (7)

G-C 3
2

=
(1)( 2.64)2

(1)( 2.64)2 + 20
= .26

 

Non-orthogonal contrasts on a manipulated factor

Our scientifi c hypothesis cannot always be tested by orthogonal 
contrasts. If that occurs, especially when the number of contrasts is 
larger than the degrees of freedom for the between-group source, 
in general, the Type-I error rate for contrast is adjusted to keep 
the familywise Type-I error rate within standard levels of .05 or 
.01. In practice, this means dividing our alpha level by the number 
of planned contrasts. To this end, if the factor has four different 
levels (df = 4 - 1 = 3) and, for example, four contrasts are planned, 
then an adjusted alpha level equal to .05 / 4 could be used. When 
performing this adjustment, Rosenthal, Rosnow, and Rubin (2000) 
recommend also adjusting the effect-size indexes to make them 
consistent with the signifi cance level adjusted by the number of 
contrasts. Thus, an adjusted t or F must substitute a normal t or F 
in Equation 6 or 7. Let us suppose our third contrast forms part of 
a group of four planned contrasts. Its adjusted p value would be 
.016 × 4 = .064, corresponding4 to an adjusted t (df = 20, p = .064) 
= -1.96. It is therefore possible to compute an adjusted sum of 
squares for the contrast by using equations equivalent to Equations 
6 and 4 respectively with adjusted values:

 Adj SSContrast = adj t2 * MS Error (8)

Adj G-C
2

=
AdjSSContrast

AdjSSContrast + SSError  (9)

Adj SS C3 = -1.962 * 72.80 = 279.67

With this modifi ed formula, a lower generalized eta squared 
would be obtained than would with normal t values (.17 instead of 
.26; see upper part of Table 3):

 G-C 3
2

=
279.67

279.67 +1456.00
= .16

 

The same result would be obtained from a formula equivalent 
to Equation 7 with adjusted values of t:

Adj 2
=

dfEffect *Adj FEffect
dfEffect *Adj FEffect + dfError

=

=
dfEffect *Adj t2Effect

dfEffect *Adj t2Effect + dfError  (10)

G-C 3
2

=
(1)( 1.96)2

(1)( 1.96)2 + 20
= .16

 

Table 2
Results of the Analysis of Variance for example data in a one-factor between-

group design

Source SS a df MS F t b p

Between-group 1764.00 3 588.00 8.08 .001

C1: a1-a2,3,4 968.00 1 968.00 3.65 .002

C2: a2-a3,4 289.00 1 289.00 1.99 .060

C3: a3-a4 507.00 1 507.00 -2.64 .016

Within-group (Error) 1456.00 20 72.80

Total 3220.00 23

a SS for contrasts not provided by SPSS; computed from n * (Σ ay–)2/Σ a2 (value of contrast 
in SPSS = Σ ay–). b The statistical tests provided by SPSS are F for general effect and 
Student t for contrasts
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Contrasts on a measured, non-manipulated factor

One advantage of generalized eta squared is that the 
manipulated or measured nature of the factor is taken into account. 
Let us suppose that athletics have decided the training procedure 
in accordance with their preferences. Application of the general 
formula by Olejnik and Algina (2003) to the planned contrasts on 
our non-manipulated factor (δ = 0; Σ SS Subjects/Cov = SSError) 
fails to yield the usual partial eta squared for any contrast (lower-
case letter c indicates a measured factor):

 G-c
2

=
SScontrast

SSMeasured + SSError
=
SScontrast
SSTotal  (11)

Thus, the generalized eta squared for the same contrast can be 
greater for a manipulated factor than for a measured factor, when it 
is equivalent to eta squared (see 3 orthogonal rows in Table 3):

 G-C 3
2

=
507.00

507.00 +1456.00
= .26; G-c 3

2
=
507.00
3220

= .16
 

Finally, if this contrast on a measured factor is part of four 
planned contrasts, the effect-size index would be even shorter, 
since the sum of squares of the contrast would be adjusted (see 
Table 3):

Adj SS C3 = -1.962 * 72.80 = 279.67; Adj η2
G-C3

 = 279.67/3220 = .09

Omnibus test followed by post-hoc comparisons

An omnibus test permits general research questions to be 
evaluated. The objective, without a specifi c prediction from the 
theoretical background, is to discover whether there is any statistical 
difference, at least between the lowest and highest mean. Post-
hoc multiple comparisons are developed after this omnibus test to 
discover whether there are any more signifi cant differences. In this 
case most authors recommend applying a Bonferroni adjustment. 
SPSS offers multiple post-hoc tests, but not all include adjustment of 

the alpha level. This is the problem with the LSD (Least Signifi cant 
Difference) test, although no previous warning of this drawback is 
given. Other tests are not recommended, since they fail to provide 
adequate control of the familywise Type-I error rate, such as Duncan’s 
test (Davis & Gaito, 1984) and Student-Newman-Keuls’s test 
(Keselman, Keselman, & Games, 1991). For this reason, these tests 
are excluded from certain simulation studies (e.g. Ramsey, 2002), 
although SPSS has yet to eliminate these obsolete procedures from 
its catalogue. On the other hand, Scheffé’s test is too conservative, 
because it sets the familywise Type-I error rate for all the possible 
comparisons, both pair and complex, but at the same time, is not 
well programmed in SPSS, which only provides pair contrasts.

Nevertheless, it would be easy to compute an adequate effect-
size measure for the omnibus test from Equation 1: the same for 
manipulated or measured factors. More diffi culties are found, 
however, in the computation of appropriate indexes for post-hoc 
tests. One possibility would be to compute adjusted t values from 
the adjusted probability of the post-hoc test and then compute 
the adjusted sums of squares for the contrasts from Equation 8. 
Finally, Equation 9 can be applied for a manipulated factor, or 
Equation 11, with adjusted sums of squares in the numerator, for 
a measured factor. For example, the p value for a Tukey HSD test 
on the comparison between the third and fourth groups is .069. 
The adjusted5 t value for this probability is t = -1.92. By using 
this new t value, a lower effect-size index would be obtained for a 
manipulated factor and an even lower effect-size index would be 
obtained for a measured factor (see Tukey HSD rows in Table 3).

Two-way between-group factorial design

Let us suppose the same previous data example, but also 
considering the gender of the participants (see Table 1), with 
the six items of data in each experimental condition having been 
obtained from three men and three women. The design is now a 4 
× 2 factorial. The GLM: Univariate command in SPSS produces 
a factorial ANOVA with all the main and interactive effects. 
If all the factors of the design are manipulated factors, suitable 
generalized eta squared indexes can be obtained, equivalent to 
partial eta squared statistics, by requesting estimates of effect size 
in the Options button. Problems arise when measured factors are 
included in the design or the interest lies in planned contrasts, 
especially if interaction contrasts are desired.

Orthogonal contrasts on main and interaction effects

The GLM: Univariate command does not perform interaction 
contrasts. For example, by requesting Helmert contrasts, SPSS 
will only provide three main-effect Helmert contrasts on feedback 
and one main-effect contrast on gender. To obtain the three derived 
interaction contrasts, we must add another piece of syntax using 
the LMATRIX command (IV1 = feedback; IV2 = sex):

UNIANOVA DV BY IV1 IV2
/CONTRAST(IV)=Helmert
/LMATRIX = IV1*IV2 3 -3 -1 1 -1 1 -1 1; IV1*IV2 0 0 2 -2 -1 
1 -1 1; IV1*IV2 0 0 0 0 1 -1 -1 1.
 
Table 4 shows the results provided by the package for general 

effects (see upper part of Table 4) and the planned contrast defi ned 
in the previous piece of syntax (see lower part of Table 4).

Table 3
 Generalized eta squared for contrast 3 depending on the research situation

Factor Background p a t b G-C
2

=
SSContrastc

SSContrast + SSError η2
G-C3

M
an

ip
ul

at
ed 3 orthogonal .016 -2.64 507.00 / (507.00 + 1456.00) .26

4 non-orthogonal .064 -1.96 279.67 / (279.67 + 1456.00) .16

Tukey HSD .069 -1.92 268.37 / (268.37 + 1456.00) .16

Factor Background p a t b

 
G-c
2

=
SS co ntrast

SSTotal η2
G-c3

M
ea

su
re

d 3 orthogonal .016 -2.64 507.00 / 3220.00 .16

4 non-orthogonal .064 -1.96 279.67 / 3220.00 .09

Tukey HSD .069 -1.92 268.37 / 3220.00 .08

a Adjusted p in the last two rows (4 non-orthogonal and Tukey HSD)
b Adjusted t in the last two rows. c Adjusted SS in the last two rows
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In order to obtain generalized eta squared indexes for each 
contrast, appropriate sums of squares must be obtained for each 
contrast from Equations 5 or 6 (see lower part of Table 4). The 
formulas by Olejnik and Algina (2003) can then be adapted to 
contrasts instead of general effects, and to two-factor designs 
instead of three-factor designs. As can be observed in Table 5, 
the general rule is to include in the denominator of the formula: 
the error sum of squares, the sum of squares for the contrast of 
interest, and the sums of squares for the remaining general or 
contrast effects on measured factors. Table 5 also exemplifi es the 
application of these formulas for main-effect contrast 3 on A and 
interaction contrast 3 depending on the manipulated or measured 
nature of the factors. As can be observed in these formulas and 
examples, the maximum value of generalized eta squared for 
contrasts on A or interaction with A is obtained when both factors 
are manipulated. This value decreases even when the measured 
factor is only the other factor, B, it decreases even more when the 
measured factor is only A, and takes the minimum value when both 
A and B are measured factors.

Non-orthogonal or post-hoc comparisons on main and interaction 
effects

 
When comparisons are developed after an omnibus test, the fi rst 

problem with SPSS is the lack of post-hoc tests for the interaction 
effect. That problem can be solved using the same command as 
for planned contrasts with a Bonferroni adjustment. This is the 
same strategy to be used when planning non-orthogonal contrasts, 
especially if they exceed the number of degrees of freedom of the 
factor. The second problem involves combining the use of the 
adjusted sum of squares with the use of different denominators 
depending on the manipulated or measured nature of the factors. 
The proposal here is to use the same equations previously compiled 
for contrast analysis in Table 5, but with adjusted t values derived 

from the adjusted p values. Once again, the adjusted sum of squares 
can be obtained by means of Equation 8.

Discussion

Olejnik and Algina (2003) pointed out that the characteristics 
of the designs must be taken into account in order to provide 
comparable effect-size indexes across a variety of designs. We 
have pointed out that also the kind of hypothesis to be tested must 
be taken into account. The power of a study can be increased not 
only by introducing blocking variables, but also via the planning 
of contrast analysis, especially in an experimental context. 
Even when planned contrasts are not possible, appropriate 
effect-size indexes must also be reported. In a small percentage 
of articles, authors calculate effect-size indexes for post-hoc 
contrasts, usually reporting partial eta squared for the factor and 
eta squared or Cohen’s d for post-hoc comparisons (Fritz et al., 
2011). This practice can overestimate the effect size because 
generalized eta squared in post-hoc comparisons would involve 
eta squared when the factor is measured and partial eta squared 
when the factor is manipulated. Additionally, in accordance with 
Rosenthal et al. (2000), we have proposed an adjustment of the 
effect-size index for post-hoc comparisons (also for planned 
contrast with a Bonferroni adjustment) that further reduces the 
effect size. 

Rosnow and Rosenthal (1996) distinguish between ways to 
increase the power that can be used only by original researchers, 
and ways to increase power and statistical validity of a published 
study that can be used by research consumers when the original 

Table 4
Results of the Analysis of Variance for example data in a 4 × 2 factorial design

Source SS df MS F p

Between-group 2268.00 7

Feedback 1764.00 3 588.00 9.88 .001

Gender 80.67 1 80.67 1.36 .261

Feedback*Gender 423.33 3 141.11 2.37 .109

Within-group (Error) 952.00 16 59.50

Total 3220.00 23

Contrast
Contrast
estimate 

SS a df
Standard

error
t b p

Feedback

C1: a1-a2,3,4 14.67 968.00 1 3.64 4.03 .001

C2: a2-a3,4 8.50 289.00 1 3.86 2.20 .043

C3: a3-a4 -13.00 507.00 1 4.45 -2.92 .010

Gender 3.67 80.67 1 3.15 1.16 .261

Feedback*Gender

C1: (a1-a2,3,4)(b1-b2) 36.00 162 1 21.82 1.65 .118

C2: (a2-a3,4)(b1-b2) 28.00 196 1 15.43 1.81 .088

C3: (a3-a4)(b1-b2) 9.33 65.33 1 8.91 1.05 .310

a Not provided by SPSS; computed from n * (Σ ay–)2 / Σ a2 . b Not provided by SPSS; 
computed from Contrast estimate / Standard error

Table 5
Generalized eta squared formulas for main-effect and interaction contrast 3 in a 4 

× 2 factorial design (adapted from Olejnik and Algina, 2003, p. 438)

Design Contrasts (C or c) a Contrast 3

C on A / c on a C3 on A / c3 on a

AB
SSC

SSC + SSError

507.00

507.00 + 952.00
= .35

Ab
SSC

SSC + SSb + SSAb + SSError

507.00

507.00 + 80.67 + 423.33+ 952.00
= .26

aB
SSc

SSa + SSaB+ SSError
507.00

1764.00 + 423.33+ 952.00
= .16

ab
SSc

SSa + SSb + SSab + SSError
507.00

1764.00 + 80.67 + 423.33+ 952.00
= .1

C on AB or Ab / c on aB or ab C3 on AB or Ab / c3 on aB or ab

AB
SSC

SSC + SSError

65.33

63.33+ 952.00
= .06

Ab
SSC

SSb + SSAb + SSError
65.33

80.67 + 423.33+ 952.00
= .04

aB
SSc

SSa + SSaB+ SSError

65.33

1764.00 + 423.33+ 952.00
= .02

ab
SSc

SSa + SSb + SSab + SSError

65.33

1764.00 + 80.67 + 423.33+ 952.00
= .02

a Upper-case letters indicate a manipulated factor; lower-case letters indicate a measured 
factor
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researchers fail to complete the task. The latter means of increasing 
power would involve performing contrast and power analysis 
based on the reported results. To this end, the formulas and 
procedures recovered in this report are based on sums of squares of 
effects or contrasts, easily obtained from the means and number of 
observations usually reported; and/or in sums of squares of error, 
that can be derived from means, F values, and degrees of freedom. 
However, professional psychologists and researchers would be 
even more interested in statistical packages that include in their 
computer programming these indexes for multiple contrasts. 
“Authors of statistical software packages have a responsibility to 
assist researchers in following the best practices in statistics” (Kirk, 
2001, p. 216), although, as we have learned so far, “these things 
take time” (Cohen, 1990, p. 1311). Unfortunately, neither general 
statistical packages nor statistical software for Meta-Analysis have 
incorporated indexes that are comparable across designs and type 
of hypothesis in the form of generalized eta squared. While they 

decide to modify its outputs, we have also considered it necessary 
to facilitate computations with several spreadsheets6.
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Footnotes

1 Based on the topic of study by Zubiaur, Oña, and Delgado (1998).
2 Output fi les are available at http://personal.us.es/trigo/suppmaterials.htm.
3 The third contrast will be used to exemplify all calculations.
4 Obtained from http://statpages.org/pdfs.html for df = 20 and p = .060.
5 Obtained from http://statpages.org/pdfs.html for df = 20 and adjusted p 

= .069.
6 Spreadsheets are available at http://personal.us.es/trigo/suppmaterials.htm.
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