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Multistage adaptive testing has reemerged in the last few years 
as an alternative to computerized adaptive tests (CAT). Unlike 
CAT, multistage tests administer a predetermined set of items 
(i.e., modules) to respondents at each adaptation point. Therefore, 
adaptation takes place between modules and not between single 
items. However, the main difference between a multistage test and 
a CAT is that all possible test forms can easily be constructed 
before administration of the items begins. Thus, a strong control 
can be assumed over the attributes of the items (such as item 
content or item diffi culty) comprising each module (Hendrickson, 
2007; Yan, von Davier, & Lewis, 2014). In multistage adaptive tests, 
examinees go through several stages; they take a fi rst stage with a 
module of moderate diffi culty, or highly informative for medium 
latent trait levels, often called the routing test, and, depending 
on their performance, they are sent to one of the modules of the 
second stage, more adjusted to the level of each respondent in 

the evaluated latent trait. Therefore, once a module is completed, 
adaptation takes place until the last stage is reached. 

Different multistage structures can be assembled. A multistage 
structure with a single module in the fi rst stage and three modules 
in the second stage is called a 1-3 structure. Thus, a structure with 
three stages with one module in the fi rst stage and two modules 
in the second and third stages is a 1-2-2 structure. Furthermore, as 
the number of stages and the modules per structure increase, so do 
the complexity and the adaptability of the structure. Nonetheless, 
Luecht and Nungester (1998) pointed out the relevance of fi nding 
a balance between the complexity and the adaptability of a 
multistage test. Adding too many stages and modules could not 
lead to optimal structures. In fact, it seems that structures with 
a low number of modules per stage perform as well as structures 
with the same number of stages and more modules per stage 
(Wang, Fluegge, & Luecht, 2012). 

The procedure usually followed to assemble a multistage test 
is the Automated Test Assembly (ATA; Diao & Van der Linden, 
2011). ATA converts the test construction into a linear optimization 
problem. An objective function (i.e., the test information) has to 
be maximized or minimized with respect to some variables (i.e., 
items to be selected) fulfi lling several constraints (i.e., the item 
content of the modules, item diffi culty, or the test length). Thus, we 
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Background: Multistage adaptive testing has recently emerged as an 
alternative to the computerized adaptive test. The current study details 
a new multistage test to assess fl uid intelligence. Method: An item pool 
of progressive matrices with constructed response format was developed, 
and divided into six subtests. The subtests were applied to a sample of 
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Un test adaptativo multietapa de inteligencia fl uida. Antecedentes: 
los test adaptativos multietapa han emergido recientemente como una 
alternativa a los test adaptativos informatizados. Se presenta en este 
estudio un test multietapa para evaluar la inteligencia fl uida. Método: 
se desarrolló un banco de ítems de matrices progresivas con formato de 
respuesta construida que posteriormente fue dividido en seis subtests. 
Los ítems se administraron a un total de 724 estudiantes universitarios. 
Se estudiaron las propiedades psicométricas de los subtests (fi abilidad, 
dimensionalidad, evidencias de validez) y se calibró el banco con el modelo 
de respuesta graduada. Se construyeron después dos estructuras multietapa 
a través del ensamblaje automático de tests  y se comparó la información 
proporcionada por cada una de ellas. Resultados: los ítems mostraron 
unas propiedades psicométricas adecuadas. De las dos estructuras puestas 
a prueba, se conservó fi nalmente la estructura sencilla, pues resultó más 
informativa. Discusión: los resultados de estos dos estudios avalan el 
empleo del FIMT, una herramienta que emplea este formato para evaluar 
de forma innovadora y precisa la inteligencia fl uida.
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could determine which items should compose the modules of each 
stage of the test to reach the optimal solution. 

In this study, ATA is used to assemble a multistage test with 
a pool of progressive matrix items. Like the Raven test, these 
items attempt to measure the fl uid intelligence of the examinees. 
Progressive matrix tasks are a key component in the evaluation the 
g-factor or general mental ability (Snow, Kyllonen, & Marshalek, 
1984). Abstract, numerical, and spatial reasoning are some of 
the usual abilities more closely related to matrix tests (Colom, 
Escorial, Shih, & Privado, 2007). Lower relations can be also 
found between the matrix tests and other measures of crystallized 
intelligence, such as verbal reasoning or vocabulary tasks (Colom, 
Abad, Quiroga, Shih, & Flores-Mendoza, 2008). Furthermore, 
the relation between fl uid intelligence and working memory was 
widely studied in the academic literature during the last two 
decades (Ackerman, Beier, & Boyle, 2005). 

The purpose of this research is to assemble a new and fully 
operational fl uid intelligence multistage test. This test presents 
two peculiarities: (a) it is based on a short and heavily constrained 
item pool, and (b) it is meant to be applied in evaluation contexts 
for high-ability level examinees. The strategies followed to deal 
with such an item pool and to maximize test information for high 
latent trait values are detailed in the following studies. 

STUDY 1
 
The fi rst study focuses on the development and the 

psychometric properties of the initial item pool, such as reliability, 
dimensionality and validity evidence based on relations with other 
related variables. An IRT model is also proposed to calibrate the 
items and obtain the participants’ latent scores. 

Method

Participants

A sample of 724 psychology students (76% women and 24% 
men; n

1
 = 132, n

2
 = 121, n

3
 = 112, n

4 
= 117, n

5 
= 127, n

6 
= 115 for 

each subtest) was selected, aged from 18 to 30 years old (M = 
19.51, SD = 1.69). Of them, 169 students agreed to be assessed 
also in general mental ability, 271 in working memory, and 145 
agreed to perform some tasks of attention control. The sampling 
was intentional and was carried out in the Universidad Autónoma 
de Madrid. Participation was voluntary. 

Instruments

Item pool development. Three experts in psychological 
evaluation and psychometrics developed a total of 54 progressive 
matrix items, following the taxonomy rule proposed by Carpenter 
et al. (1990). According to Primi (2001), item diffi culty was 
manipulated by altering the number of attributes present in each 
item and varying the number of rules involved in their resolution 
(i.e. constant per row, quantitative pairwise progression, fi gure 
addition or subtraction and distribution of two or three values). 
As shown in Figure 1, each item is a 3 × 3 matrix with the lower 
square empty. The response format is constructed, so that once 
respondents have fi gured out which rules are followed by an item, 
they must draw their own response in the lower square, selecting 
different colors and patterns for the 16 empty cells to compose 

their answer. In this case, respondents should guess how changes 
the background of each row and how it affects to the fi gures in 
each square. Then they have to notice the parallelism between 
these rules and the new situation (i.e. the empty square) to, fi nally, 
apply correctly the rules to compose a new solution that fi t in the 
matrix, drawing a background of vertical lines and a 2-cell fi gure 
with vertical and horizontal lines.  

Items are then scored from 1 to 5, depending on the number 
of correctly fi lled cells: 1 (7 or fewer right cells), 2 (from 8 to 11 
right cells), 3 (12 or 13 right cells), 4 (14 or 15 right cells) and 5 (the 
correct answer, 16 right cells). 

The items were designed by triads, so for each original item 
designed, two more clone-items were created by modifying 
some accessory features (i.e., color, shape) of the original item, 
but keeping the same rules needed to fi nd the right response. 
Therefore, the rules needed to solve an original item of a triad 
are the same rules needed to solve their clones. Eighteen original 
items were developed and, based on them, 36 new items (the 
clones) were also developed, with a total number of 54 items in 
the pool. These items were originally developed to construct a test 
based on automatic item generation. 

Subtest development. In order to avoid the inclusion of 
two or more items following the same rules in the same test, a 
counterbalanced anchoring design (von Davier, Holland, & Thayer, 
2004) was carried out for the application and calibration of the 
item pool. Six subtests were then assembled, each one comprised 
of 18 items from different triads. 

Additional measures. With the aim of gathering some validity 
evidence, several measures related to fl uid intelligence were also 
assessed. General mental ability was measured by the Advanced 
Progressive Matrices test (APM; α = .71), the subscales R (a logical 
series test; α = .74) and V (a vocabulary test; α = .76) of the Spanish 
version of the Primary Mental Ability test (PMA; Cordero-Pando, 
1984), and the subscales of abstract reasoning (AR; α = .66), 
numeric reasoning (NR; α = .63), and verbal reasoning (VR; α 
= .61) from the Spanish adaptation of the Differential Aptitudes 
Test (DAT-5; Corral & Cordero-Pando, 2006). Working memory 
was evaluated with the Spanish adaptation of the reading span 
(Elosúa, Gutiérrez, García-Madruga, Luque, & Gárate, 1996), 

Figure 1. Example item
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the computation span (Ackerman, Beier, & Boyle, 2002), and the 
dot matrix task (Miyake, Friedman, Rattinger, Shah, & Hegarty, 
2001). 

Procedure
 
The sampling was carried out in three sessions. Participants 

were randomly assigned to one of the fl uid intelligence subtests 
in the fi rst session. Then, they performed the tasks of working 
memory and the rest of the tests in a second and third sessions, 
respectively. They had two hours per session to perform the 
experimental tasks and fulfi ll the questionnaires.  

Data analysis

The analyses were conducted using the free statistical software 
R. Item descriptive statistics and the internal consistency of the 
subtests were obtained with the psych package (Revelle, 2015). 
Validity evidence, based on the relations with other variables, 
was assessed by correlating the additional measures with the raw 
scores in each subtest. The mirt package (Chalmers, 2012) was 
utilized to calibrate the item pool under the graded response model 
(Samejima, 1969). This package was also employed to study the 
dimensionality of each subtest separately with the M

2 
statistic, a 

limited-information goodness-of-fi t statistic developed to assess 
the fi t of overall IRT models utilizing marginal residuals of item 
pairs or triplets (Maydeu-Olivares & Joe, 2006). This statistics is 
interpreted as a χ2 test; if the M

2
 results no signifi cance, it means 

good overall fi t. 

Results

Descriptive analysis and reliability. The item pool presented 
different diffi culty levels, with 24 relatively easy items –with a 
mean of 4 or higher–, 22 items of moderate diffi culty –with a mean 
between 3 and 4–, and 8 items of higher diffi culty –with means 
between 2 and 3. Thus, the standard deviation of the items (around 
1) was indicative of an adequate heterogeneity in the participants’ 
responses. Regarding internal consistency, the Cronbach indices 
of the subtests were α

1
 = .82, α

2
 = .79, α

3
 = .70, α

4
 = .72, α

5
 = .77, 

and α
6
 = .82. 

Dimensionality and IRT modeling. The subtests were calibrated 
separately under the graded response model, and the M

2
 statistic 

was computed for each subtest. This index showed an adequate fi t 
in each subtest when the items were calibrated under the graded 
response model (M

2 Subtest1
(88) = 80.16, p = .712; M

2 Subtest2
(85) = 

75.64, p = .756; M
2 Subtest3

(91) = 93.32, p = .413; M
2 Subtest4

(89) = 
81.81, p = .693; M

2 Subtest5
(87) = 60.14, p = .987; and M

2 Subtest6
(87) 

= 81.24, p = .654). Therefore, each subtest was evaluating a single 
dimension. 

The restrictions of item administration were also studied. 
Although it is expected that items comprising the same triad 
will have similar statistical properties, Glas and van der Linden 
(2003) pointed out that there is some variability between originals 
and clone-items which should be considered. For this purpose, 
we tested whether the item-parameter estimates are equal for 
items comprising the same triad (for further details, see Martín-
Fernández, Ponsoda, Olea, Shih, & Revuelta, 2015). A total of 14 
original-items and 10 clone-items of their triads were released, 
increasing the item pool and improving the test information. 

Several nested models were then proposed to calibrate the 
entire item pool by applying appropriate linking procedures (von 
Davier et al., 2004), considering the relations among the items 
from a same triad. Four nested graded response models were 
proposed: (1) an unconstrained model, (2) a model fi xing the slope 
(a

j
) and the threshold (b

jk
) parameters of the not-released clones 

of the same triad to the same value, (3) a model with only the 
threshold (b

jk
) parameters of the not-released clones fi xed to the 

same value, and (4) a model fi xing only the slope (a
j
) parameters 

of the not-released clones to be equal. 
Compared with the unconstrained model, only the slope-fi xed 

one (model 4) showed that there were no signifi cant differences 
between the two models in terms of fi t. So fi nally the more 
parsimonious model was kept, forcing the a-parameters of some 
clones of the same triad to be equal (see Table 1). 

Relations with other variables. The raw scores in the subtests 
were positively related with the other general mental ability 
measures (see Table 2). They showed a strong relation with the 
Raven test and the other general mental ability measures, except 
for the V scale of the PMA –the vocabulary test. The subtest 
scores also showed a positive and strong relation with the working 
memory tasks. 

Discussion

This fi rst study showed that the psychometric properties of 
the progressive matrix item pool are adequate to evaluate fl uid 
intelligence. On the one hand, the internal consistency and the 
dimensionality of the six subtests indicated a good reliability of 
the measure, and that each subtest is measuring a single latent 

Table 1
Model comparisons

Model Parameters
log-

likelihood
G2 df p AIC BIC

1 258 -13571.55 27659.1 28841.98

2 205 -13643.13 143.156 42 <.001 27718.26 28708.57

3 214 -13638.71 134.312 33 <.001 27727.41 28758.99

4 248 -13574.80 6.509 9 0.688 27647.61 28789.22

Note: Model 1: unconstrained model, Model 2: slopes and thresholds fi xed, Model 3: 
thresholds fi xed
Model 4: slopes fi xed

Table 2
Correlations among the subtest scores and the additional measures

FIMT

APM .47**

DAT5 - AR .52**

DAT 5 - NR .23**

DAT 5 - VR .39**

PMA – R .28**

PMA – V .12 

Reading span .29**

Computation span .30**

Dot matrix .42**

**p<.001
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construct. On the other hand, the close relation between the score 
of the participants in the subtests and the general mental ability 
measures, in particular with the Raven test, are highlighted. As 
expected, the verbal reasoning measures were the less related 
to the subtest scores (Colom, Rebollo, Palacios, Juan-Espinosa, 
& Kyllonen, 2004). The correlations with the working memory 
measures were also congruent with previous studies (Colom et al., 
2007). 

In conclusion, this study provides a fully operational item 
pool of fl uid intelligence, ready to allow a multistage test to be 
assembled with it.

STUDY 2
 
The second study explores different multistage structures 

by automated test assembly (ATA) in order to obtain the most 
informative form of the Fluid Intelligence Multistage Test (FIMT) 
for the higher latent trait values. 

Method

Participants

The same sample of 724 psychology students was utilized to 
fi nd the optimal multistage test structure. 

Instruments

Item pool. The operational item pool of fl uid intelligence of the 
Study 1, which eliminated some restrictions in the administration 
of the original and clone-items, was employed in this study. 

Procedure

Two multistage structures were tested in this study (see Figure 
2). Both structures were divided into three stages, with one general 
routing test in the fi rst stage followed by two more stages with 
two (structure 1-2-2) or three modules (structure 1-3-3) per stage. 
Hence, respondents were fi rst evaluated with a module of general 
diffi culty –the routing test– and then they were sent on to a new 
module of variable diffi culty, depending on the performance of 
each respondent on the routing test. Once the second stage had 
fi nalized, respondents were again sent on to a new module of a 
diffi culty according to their performance in the previous stages. 
Finally, when the third stage was completed, the latent trait θ was 
estimated for each respondent.  

When setting the ATA constraints, two strategies were followed 
in order to increase the information of the test for examinees 
with a high ability level. First, items could be repeated across 
the modules of different stages as long as the same item was not 
presented twice in the same path of the multistage test. And second, 
the high diffi culty module of the third stage was fi ve items longer 
than the rest of the modules. Therefore, the ATA constraints were 
formulated as follows: 

  
Routing test

 max y (1)

subject to:

I j
k=1

K

j=1

J

k( ) xj y, k 1.75, 1.75[ ]
 (2)

x j
j Vc

1
 (3)

x j
j=1

J
= N1

 (4)

xj 0,1{ }  (5)

y 0  (6)

The ATA fi rst needs to convert the construction task into a linear 
optimization problem. The objective of the problem is expressed in 
(1): maximize the constant y. Constraint (2) means that the sum of 
the information of the selected items in the interval between θ = 
-1.75 and θ = 1.75 must be equal or higher than y. Thus, if y must be 
maximized, then the test information is the maximum possible. As 
expressed in (5) x

j
 is a dichotomous variable indicating whether or 

not item j is included in the test. Thereafter, the combination of items 
that provides more information to this theta interval is selected. 

Besides the information constraint, (3) express that more 
than one clone-item of a certain triad cannot be presented 

2

3

4

5

1

2 5

3 6

74

Structure 1 - 2 - 2

First Stage Second Stage Third Stage

Structure 1 - 3 - 3

1

First Stage Second Stage Third Stage

High
difficulty

Low
difficulty

High
difficulty

Low
difficulty

Moderate
difficulty

Figure 2. FIMT tested multistage structures
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simultaneously (V
c
 denotes the group of j items of the pool that 

cannot be presented in the same test), and (4) fi x the length of the 
module to N

1
. At least, constraint (6) is imposed, preventing y from 

taking negative values.
The second and the third stages introduce minor changes to the 

previous constraints:

Second Stage

I j
k=1

K

j=1

J

k( ) xj y, k 1, h[ ]
 (7)

x j
j=1

J
= N2

 (8)

x j
j Sprev

= 0
 (9)

Constraints of the second stage are very similar to the routing 
test ones with a notable exception: the θ interval to maximize 
changes from module to module. The objective function remains 
the same, maximize y, in order to obtain the maximum information 
possible for a certain interval of θ (7). In the 1-2-2 structure, the 
intervals of the modules are: θ

l
 = -1.75 and θ

h
 = 0; and θ

l
 = 0 and θ

h
 

= 1.75. In the 1-3-3 structure, however, the intervals to maximize 
information are: θ

l
 = -1.75 and θ

h
 = -1; θ

l
 = -1 and θ

h
 = 1; and θ

l
 = 

1 and θ
h
 = 1.75. The constraints (8) and (9) fi x the length of each 

module to N
2
, and impede the inclusion of items presented in the 

Sprev set, which are the items already included in the path (in this 
case, the items of the routing test). 

Third Stage

x j
j=1

J
= N3, N3 = c if h 1.75

N3 = c + 5 if h 1.75  (10)

In the third stage, the constraints again remain almost equal 
with respect to the second stage. The only relevant change is 
the one expressed in (10), which denotes that the length of the 
maximum diffi culty module must be 5 items larger than the length 
of the rest of the modules of the stage. 

Data analysis

To determine which multistage structure was most 
appropriate, the number of actual paths of each structure and 
the test information provided by the paths of each structure was 
considered. To summarize the information of each path, the sum 
of K = 121 discrete points across the interval θ = -3 and θ = 3 for 
all the J items comprising each path were taken: 

I ( )path = I j
k=1

K

j=1

J

k( ), for = 3, 2.95, 2.90,…, 3( )
 

Analyses were conducted with the lp_SolveAPI package 
(Konis, 2014) for the ATA, and the mirt package (Chalmers, 2012) 
to compute the test information function. 

Results
 
Test structure. The average information across the θ = -3 and 

θ = 3 interval for the 1-2-2 confi gurations was always higher 
than the same confi gurations for the 1-3-3 structure (see Table 3). 
Regarding the number of different paths, the 1-2-2 structure always 
presented the four possible paths of its structure. Nonetheless, 
in 1-3-3, we found one or two repeated paths among the seven 
possible itineraries of this multistage structure.

The differences between the two structures were minimal but, 
given that these little discrepancies favored the 1-2-2 structure, 
the simplest structure was kept. Between the different lengths 
considered for the modules of the stages, the one comprised of fi ve 
items for the fi rst stage routing test, six items for the modules of 
the second stage, and four items for the modules of the third stage 
was chosen as the fi nal FIMT because it was the most informative 
for the latent trait interval. 

Information function. As shown in Figure 3, each curve 
corresponds to a different path in the multistage structure. Besides 
the four paths of the multistage test, two more curves were added to 
the fi gure (i.e. large discontinued lines with two points in between), 
corresponding to the information provided by a 15- or 20-item test 
comprised of randomly selected items. In fact, the information of 
the different FIMT paths was always more informative than the 
random test, even with 5 items less. 

The low/low path is comprised of the items of the routing test, 
the low diffi culty module of the second stage, and the low diffi culty 
module of the third stage. That is why this path resulted especially 
informative for the lower levels of the latent trait. Therefore, the high/
low path was the one followed by the respondents who did the routing 
test well but failed in the high diffi culty module of the second stage 
and were sent on to a lower diffi culty module of the third stage. This 
path provided less information for the low levels of θ than the previous 
path but the drop of the curve was not so sudden in intermediate and 
high levels of the latent trait. The low/high and the high/high paths 
were administered to respondents with a good performance in the 
second stage, and are comprised of 20 items instead of 15. That is 
why the information values were in general higher than in the other 
paths. The low/high path was more informative for low and moderate 
θ values than the high/high path. However, the high/high path 
resulted slightly more informative for high levels of the latent trait. 

Table 3
Average information of each multistage confi guration

Module length Structure 1-2-2 Structure 1-3-3

S1 S2 S3* Mean I(θ) Mean I(θ)

7 5 3 614.75 587.26

7 4 4 617.05 587.10

7 3 5 617.05 587.73

5 6 4 622.21 589.19

5 5 5 618.85 589.66

5 4 6 617.74 589.13

3 7 5 619.67 590.05

3 6 6 619.67 590.35

3 5 7 619.67 589.52

Note: S1 = Stage 1; S2 = Stage 2; S3 = Stage 3. 
*: Stage 3 is 5 items longer for the high diffi culty modules
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Discussion

The 1-2-2 structure was the best adapted to the characteristics 
of the item pool (i.e., limited number of items, administration 
restrictions). It demanded a lower number of items, and the 
items comprising the modules were the most informative for the 
different latent trait levels considered. However, the 1-3-3 structure 
needed more items to be assembled, which consumed the most 
informative items in the early stages, and due to the administration 
constraints, fewer informative items were available for the last 
modules. The other drawback of the 1-3-3 structure was that it 
did not use all seven possible paths because some of the items are 
repeated, comprising two paths with the same items but presented 
in a different order.

Thanks to ATA, an optimal multistage structure was achieved 
for the FIMT, granting the test precision, and adapting its diffi culty 
to the examinees’ ability. 

General Discussion

The purpose of this research was to develop a multistage test 
to assess general mental ability, focusing on examinees with high 
ability levels. 

Through the current studies, the psychometric properties of 
the initial item pool have been analyzed and different multistage 
structures have been tested to fi nally reach a fully operational 
adaptive multistage test. This is one of the key aspects of this 
research, because it constitutes an empirical application with a 
small item pool of a procedure normally employed with large item 
pools as a heuristic to decide which items should comprise the 
fi nal form of a given test (Swanson & Stocking, 1993). 

The multistage format of the FIMT allows some interesting 
options for test-based assessments. On the one hand, multistage 

testing assembled via ATA allowed an optimal treatment of the 
items comprising the fi nal test, maximizing the information of the 
measure in comparison with an arbitrary test assembly criterion. 
On the other hand, the technical implementation for multistage 
tests is far simpler than for CAT, especially when the tests are 
relatively short and the estimates of each response pattern of 
the multistage test can be previously determined, making the 
assessment more computationally effi cient, as it is not necessary 
to run any estimation method during test administration. 

Another interesting feature of the FIMT is the constructed 
response format of the items, which denies respondents the 
possibility of guessing the right answer from a given set of 
alternatives and also impedes obtaining a high score in the test 
with low elaborated responses. 

This research is not without limitations. Although the 
dimensionality of the subtests were assessed, it is necessary to 
study the dimensionality of the paths of the fi nal multistage test. 
Moreover, predictive validity evidence should also be gathered in 
further studies, relating the scores in the different paths to other 
variables, like job performance. 

The response format of the items also invites one to try other 
treatments of the answers. Although a polytomous response was 
coded and the graded response model was picked, other options 
are available. Other cut-offs could be established to demarcate the 
response categories of the items. Moreover, considering the total 
number of cells composing the empty square of each matrix, the 
continuous response model (Samejima, 1974) could be an interesting 
alternative to calibrate the items and score the examinees. The 
logistic family models could also be considered if the responses 
are coded dichotomously. Furthermore, other theoretical models 
based on the cognitive processes (Kunda, McGreggor, & Goel, 
2013) could be considered to score the items. 

Although the items were developed to assess high ability 
levels, the information provided by the FIMT for very high ability 
values (above 2) falls abruptly. This is due most likely to the low 
discrimination parameters of the most diffi cult items in the item 
pool. One way to improve this feature of the test is to develop new 
items requiring either more rules to be correctly resolved or more 
attributes present in the items (Primi, 2001).  

Another question worth considering is whether the FIMT is 
really a multistage test. Usually, once an item has been assigned 
to one of the multistage modules, it cannot be selected again. 
Besides, the length of the modules of the same stage tends to be 
the equal. If these constraints to the ATA had not been applied, 
then the information function of the resulting paths would 
have dropped substantively, leading to quite imprecise person-
parameter estimates. However, the FIMT has a test structure 
divided into stages with modules of different diffi culties, allowing 
some adaptability between the test and the examinee’s ability. It 
is precisely this adaptive nature and the control assumed over the 
contents present in each module of the test what makes the FIMT 
the best multistage test that can be assembled with this item pool. 
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