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Measurement theory and practice have changed considerably in the last 25 years. For
many assessment specialists to-day, item response theory (IRT) has replaced classical
measurement theory as a framework for test development, scale construction, score reporting,
and test evaluation. The most popular of the item response models for multiple-choice tests
are the one-parameter (i.e., the Rasch) and three-parameter models. Some researchers have
been quite adamant about using only the one-parameter model and have been rather critical of
applications of multi-parameter models such as the three-parameter model. In this paper. nine
arguments are offered for continuing research and applying multi-parameter IRT models. Also.
the position is taken that both single and multi-parameter IRT models (and many others) have
potentially important roles to play in the advancement of measurement practice and judgments
about which models to use in particular situations should depend on model fit to the test data.

Measurement theory and practice have
changed considerably since the seminal pu-
blications of Lord (1952, 1953a, 1953b),
Birnbaum (1957, 1958a, 1958b), Lord and
Novick (1968), Rasch (1960), and Fischer
(1974). Since the publication of Lord and
Novick’s Statistical Theories of Mental Test
Scores in 1968, large numbers of item res-
ponse models have been proposed, estima-
tion and goodness-of-fit procedures develo-
ped, and small- and large-scale applications,
almost too numerous and varied to count, ha-
ve followed. A quick check of the Journal
of Educational Measurement and Applied
Psychological Measurement since 1977, lo-
cated over 200 papers! And these papers re-
present only a fraction of the publications
that are available to interested readers. For
useful summaries of current as well as new
item response theory (IRT) models, readers
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are referred to Hambleton, Swaminathan,
and Rogers (1991), Lord (1980), Thissen
and Steinberg (1986), McDonald (1982,
1989), Mellenbergh (1994), Masters (1982),
Masters and Wright (1984), Goldstein and
Wood (1989), and van der Linden and
Hambleton (in press). Unidimensional and
multi-dimensional models to handle di-
chotomous as well as polytomous data with
various properties (e.g., nominal, ordinal, in-
terval) from the cognitive, affective, and
psychomotor domains, can now be found in
the measurement literature (see van der
Linden & Hambleton, in press).

Some of the largest and most influential
assessment instruments in the country are in-
fluenced in some way or other by item res-
ponse models. Arguably the most important
data to address the third goal of President
Bush’s Education 2000 is provided by the
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National Assessment of Educational Pro-
gress, an assessment system for grades 4, 8,
and 12 and based upon the three-parameter
logistic model. Two of the major standardi-
zed achievement tests, Comprehensive Tests
of Basic Skills, and the Metropolitan Achie-
vement Tests, are developed and scaled with
the three-parameter and one-parameter lo-
gistic models (or Rasch model, as it is often
called), respectively. Major national selec-
tion tests such as the Scholastic Aptitude
Test, Graduate Management Admissions
Test, Law School Admission Test, and the
Graduate Record Exam utilize the three-pa-
rameter model in item selection, scoring,
equating, detecting differentially functioning
test items, and other ways. The Armed Ser-
vices Vocational Aptitude Battery (ASVAB)
was calibrated with the three-parameter lo-
gistic model. And, numerous other achieve-
ment, aptitude, and personality tests could be
added to this list. Test applications based
upon IRT principles and applications impact
on millions of students in the U.S. and in ot-
her countries each year (Hambleton, 1989).
Working within the item response theory
field is a group of researchers led by Profes-
sor Benjamin Wright and several prominent
former students from the University of Chi-
cago, who reject many of the current IRT
models and their applications. Their rejec-
tion appears to be based on theoretical as
well as empirical grounds (e.g., Wright,
1968, 1977, 1984; Wright & Stone, 1979).
Their special interest is in the Rasch model
(and extensions) and its applications to test
data (Rasch, 1960). Many European scho-
lars, in addition to Wright and his co-wor-
kers, too (e.g., Fischer, 1974; Gustaffson,
1980a, 1980b), have been responsible for
important Rasch model developments.
Whereas many IRT researchers have taken
the position that the selection of psychome-
tric models should be based in the final
analysis on their psychological meaningful-
ness, as well as goodness of fit evidence and
utility, and have adopted multi-parameter
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IRT models in their work, Professor Wright
and his co-workers argue for «fundamental
measurement.» His models preclude item
discrimination and pseudo-guessing para-
meters, for example, because these models
violate the assumptions of simple ordering
of persons and/or items required of conjoint
measurement models and hence such models
do not lead to «fundamental measurement.»
On the other hand, multi-parameter models
have found wide use in many testing appli-
cations. What seems clear is that researchers
fall into two categories: those who are basi-
cally model builders and are willing to use
many IRT models in their psychometric
work when they fit, and those who believe in
fundamental measurement and restrict their
attention, therefore, to Rasch models and ex-
tensions which do meet the strict criteria or
assumptions of conjoint measurement.

In the remainder of this paper, nine argu-
ments will be offered to support the strong
current interest in and use of IRT models
that include more than a single model para-
meter to account for item difficulty:

1. Nearly a century of testing experience.

2. Reasonableness of fitting IRT models
to data.

3. Central importance of the property of
«parameter invariance.»

4. Usefulness of item discrimination as
an IRT model parameter.

5. Usefulness of the «pseudo-guessing»
parameter as an IRT model parameter.

6. Reasonableness of IRT multi-parame-
ter software packages.

7. Successes in applications of multi-
parameter IRT models.

8. Shortcomings in the arguments to sup-
port the Rasch model.

9. Promising future of multi-parameter
IRT models.

The remainder of this paper will be or-
ganized around the nine arguments. Conclu-
ding remarks will summarize the arguments
and point to future IRT directions and deve-
lopment.
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1. Nearly a Century of Experience

Item response theory, as clearly outlined
in Lord and Novick (1968) and Lord (1980),
was developed over at least a 50-year period
and evolved from classical measurement
theory. Basic concerns for item characteristic
curves and invariant item and ability para-
meters can be traced to work by Tucker
(1946) and Gulliksen (1950). What troubled
Tucker, Gulliksen, Lawley, Lord, and other
psychometricians about their models and
methods in the 1940s was that they produced
item and ability parameters which were
sample dependent. For example, Figure |
highlights the problem (see Lord, 1953b).
The same group of examinees would have
relatively low true scores on a difficult test
and relatively high true scores on an easy
test measuring the same ability. However,
examinees approach both tests with the same
ability. Lord felt it would be useful to find
psychometric models which could incorpo-
rate the characteristics of the test items into
the ability parameter estimation process so
that the abilities and a single ability distribu-
tion could be estimated. Popular item statis-
tics such as item difficuity (e.g., p-value) and
item discriminating power (e.g., the point-bi-
serial correlation), too, were sample depen-
dent, which limited their usefulness in test
design. In fact, interest in the biserial corre-
lation as a measure of item discrimination
increased in the 1950s because of evidence
that it tended to be more sample independent
than other item discrimination indices.

The goal of these early psychometricians
was to obtain invariant parameters: descrip-
tors of items which would not depend upon
the particular examinee sample, and descrip-
tors of examinees (i.e., ability scores) which
would be independent of the sample of items
from the larger domain of items measuring
the ability of interest. Lord’s contributions in
1952 and 1953 (1952, 1953a, 1953b) were
especially important. In these papers, he
developed the normal ogive model, offered
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approaches for model parameter estimation
and model fit, and formally connected IRT
models to well-known classical measure-
ment models. McDonald (1989, p. 209) went
so far as to say «...just about anything done
in the field of binary item response theory
can be thought of as a footnote to the semi-
nal research of Frederic M. Lord» (p. 209).
This statement captures the sentiments of
many psychometricians.

Lord offered a two-parameter normal-
ogive unidimensional model in 1952: Uni-
dimensional because this was then, and
remains today, a reasonable assumption for
many sets of test data, normal-ogive ICCs
(rather than logistic) because normal ogives
were popular (at the time) «S»-shaped cur-
ves bounded by 0 and 1 and had been used
successfully by other psychometricians
(Tucker, 1946), and two item parameters
because of the long tradition of utilizing two
item statistics, difficulty and discrimination,
in test development and test analysis work.
On this last point, both item statistics had
simple and important relationships to test
score characteristics. Thus, the use of a
second item parameter was «not an obses-
sion for complexity...» as one critic reported,
but rather a response to well-established and
validated psychometric procedures. An item
discrimination parameter was placed in the
model by Lord because of empirical eviden-
ce of its importance and utility. To assume
all discriminating powers equal, when it was
well known then, as it is today, that items
typically show variability in their discrimi-
nating power, would have been unlikely.

Later, Birnbaum (1957, 1958a, 1958b)
substituted the logistic function for the
normal-ogive, and added an additional para-
meter to the model to account for non-zero
performance of low-ability examinees. In
1960, Georg Rasch published his own ver-
sion of a one-parameter IRT model for use
with achievement tests, which, in fact, in a
different (but equivalent) form, had been
known by Lord in 1952. But Lord rejected
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the model because he felt it was unsuitable
for use with multiple-choice items. Rasch,
who was a statistician and not a psychome-
trician himself or he would have known of
the earlier work by Lord and others which
appeared in Psychometrika and Educatio-
nal and Psychological Measurement, desi-
red separability of item and person para-
meters, and he achieved it with his
one-parameter model. In contrast, many
psychometricians of the day valued (at least)
two item parameters in their psychometric
models, and were prepared to give up suffi-
cient statistics (which were available with
the Rasch model) to improve the fit of their
models. Also, as Lord (1980) noted later,
sufficient statistics are not guaranteed by the
Rasch model. They are only present when
this model fits the data.

Were it not for the lack of computer po-
wer in the 1950s, applications of item res-
ponse models would have proceeded more
quickly. Conditions were more favorable in
the late 1960s and serious research began in
many places. Publication of Lord and No-
vick’s (1968) Statistical Theories of Mental
Test Scores was influential, and Wright
(1968) was influential, too. His publications
(Wright, 1968; Wright & Panchapakesan,
1969), his level of energy, and his stimula-
ting Rasch model training programs at the
annual meetings of AERA attracted many
researchers to the IRT area, though not
always to his philosophical viewpoint.

Rasch model advocates have adopted
«specific objectivity» and «sufficient sta-
tistics» as fundamental and essential in
their work. To many psychometricians,
their position represents a narrow basis on
which to build a measurement model. It
must be kept in mind that most (perhaps
all) psychometricians would be willing to
use the Rasch model when it can be de-
monstrated that it fits their data. In this way,
they regard the Rasch model as one of many
logistic models that lead to invariant model
parameters. When it fits, the Rasch model
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can be used. In contrast, Rasch model advo-
cates adhere to one model (or, more co-
rrectly, to one family of models) and they
will redefine the ability measured by the test
(explicitly, and, more often, implicitly, to the
detriment of construct validity of the ability
of interest) by deleting misfitting items.

2. Models or Data: Which Should
Come First?

Few psychometricians would dispute the
point that models are valuable in advancing
psychometric work such as constructing tests
and scaling and equating scores. And, many
psychometricians would be quick to argue
that meaningful model building follows
from careful data analysis. Lord, Bock, Sa-
mejima, etc., are model builders. Lord, for
example, delayed his IRT research program
for 15 years (from 1952 to 1967), until he
was able to derive parameter estimates for a
model (the three-parameter model) that he
felt he needed to fit multiple-choice test da-
ta. Justification for his position comes from
several empirical studies (perhaps the best
evidence is reported in Lord, 1970).

Scientists develop models to explain or fit
their data, not usually the reverse. Otherwi-
se, we may still be thinking that the sun tra-
vels around the earth and the earth is the cen-
ter of the universe. Scientists in the social
sciences build their models and theories
from carefully analyzing their data. Awkward
data may force changes in a model; but
these data are not discarded for a more
appropriate set.

But, as John Tukey was quoted (by Howard
Wainer) as stating, «All models are wrong,
but they may be useful!» Consider this quote:

That the model is not true is certainly
correct, no models are - not even the

Newtonian laws. When you construct a

model, you leave out all the details which

you, with the knowledge at your disposal,
consider inessential. . . . Models should
not be true, but it is important that they
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are applicable, and whether they are ap-
plicable for any given purpose must of
course be investigated.

... we may tentatively accept the mo-
del described, investigate how far our da-
ta agree with it, and perhaps find discre-
pancies which may lead us to certain
revisions of the model.

This is a quote with which that many
psychometricians could agree. It describes
how we go about our psychometric work.
Perhaps this quote came from Fred Lord or
Darrell Bock, two of the leading model-
builders in psychometric methods. Actually,
the quote came from Georg Rasch, in his
book, Probabilistic Models for Some Intelli-
gence and Attainment Tests. Georg Rasch
was obviously not in support of models being
more important than the data. Those who
take this position advocating the Rasch model
seem to be in opposition to Rasch’s advice
about conducting psychometric research.

Does a model first, data second approach
have any merit? «Specific objectivity» is a
useful feature of a measuring instrument.
«Sufficient statistics» are valuable, too. A
psychometric model with these properties
could be designed and was, in the form of
the Rasch model. Is it of any value? If the
model fits data, it could be. Few would
dispute this position. As Rasch himself
notes, empirical evidence should be
compiled to check the fit of the model, and
«perhaps find discrepancies which may lead
us to certain revisions of the model» (Rasch,
1960). Of course, one alternative is to
discard items and/or persons which are not
consistent with the model. To many, this
position is not defensible. Curriculum
specialists would find even less use for
measurement specialists if we asked them to
narrow their test content, or delete some of
their most discriminating items, so as to
capitalize on the features of a simple
psychometric model.

A simple example of the point that suf-
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ficient statistics are not essential in testing is
easy to find. The mean of a set of test sco-
res is a sufficient statistic which is used to
estimate the population mean in a normal
distribution. However, the sample mean is
not a sufficient statistic if the distribution of
scores is non-normal. In fact, considerable
misinformation may be conveyed about the
distribution of scores were it to be used. One
popular response of statisticians or data
analysts is to report the median, which is not
a sufficient statistic, but which conveys mo-
re valuable data about the test score distri-
bution than the mean with non-normal dis-
tributions. At the very least, statistics which
are not sufficient can and do often provide
valuable information.

Whether sufficiency is essential or not,
the key point with respect to ability
estimation is that sufficient statistics are
only available to the extent that the Rasch
model fits the data. When the basic model
assumptions are violated, test score is not
a sufficient statistic for the estimation of
ability. Lord (1980) and others have made
these points often. It is not a matter of
model robustness either. Either sufficient
statistics are present or they are not.

Sufficient statistics are valued by
statisticians but they are not the only basis
on which to produce a test theory. Lord’s
(1980) view was that the concept of test
information should be central. He felt
maximizing the information provided by a
test was a desirable goal, and scoring
weights for items should be chosen to
maximize test information. Readers are
referred to Lord (1980) to see the
derivation of optimal scoring weights for
the one—, two—, and three-parameter
logistic models. The loss of information in
ability estimation with the one-parameter
model can be substantial when items vary
substantially in their discrimination
power, and performance of low-ability
examinees is not zero (see, for example,
Lord, 1980).

539



R. K. HAMBLETON

3. Parameter Invariance is the
Cornerstone of IRT

The property of invariance of ability and
item parameters is the cornerstone of IRT. It
is the major distinction between IRT and
classical test theory (see, for example, Ham-
bleton & Jones, 1993). Figures | and 2 high-
light ability parameter invariance (over tests
of differing difficulty) and item parameter
invariance (over two examinee samples of
differing ability). The property implies that
the parameters that characterize an item do
not depend on the ability distribution of the
examinees and the parameter that characte-
rizes an examinee does not depend on the set
of test items.

- The invariance property is a characteris-
tic of all item response models. Of course,
the property is only present when the IRT

<osoeocaoo-T

model fits the test data, and when model pa-
rameters are estimated properly. As Lord
(1980) reminds us, invariance is a property
of the model parameters not the estimates.
Thus, care must be taken in practice to esti-
mate model parameters well. For example, a
homogeneous low-performing group would
be a poor choice of examinee sample to ca-
librate item statistics on a set of relatively
difficult items.

Some will argue that item parameters
cannot be invariant if the choice of examinee
sample needs to be considered. But this ar-
gument is incorrect. An example may be
helpful. In the linear regression model, the
regression line for predicting a variable Y
from a variable X is obtained as the line
joining the means of the Y variable for each
value of the X variable. When the regression
model holds, the same regression line will be

<KoOocaoo-T

Test Score

Ability

Figure 1.-Test Score and Ability Distributions for the Examinee Group

540

Psicothema, 1994



ITEM RESPONSE THEQRY: A BROAD PSYCHOMETRIC FRAMEWORK FOR MEASUREMENT ADVANCES

K m———OTRTO~T
o
]

Abllity

Figure 2.—An ltem Characteristic Curve and Distributions of Ability for Two Groups of Examinees

obtained within any restricted range of the X
variable, that is, in any subpopulation on X,
meaning that the slope and intercept of the
line will be the same in any subpopulation
on X. A derived index such as the correlation
coefficient, which is not a parameter that
characterizes the regression line, is not inva-
riant across subpopulations. The difference
between the slope parameter and the correla-
tion coefficient is that the slope parameter
does not depend on the characteristics of the
subpopulation, such as its variability, whe-
reas the correlation coefficient does. Note,
however, that the proper estimation of the
regression line does require a heterogene-
ous sample. A homogeneous sample of
examinees will provide unstable estimates of
the model parameters. The same concepts al-
so apply in item response models, which can
be regarded as nonlinear regression models.
It is important to determine whether in-
variance holds, since every application of
item response theory capitalizes on this
property. Although invariance is clearly
an all-or-none property in the population and
can never be observed in the strict sense, we
can assess the «degree» to which it holds
when samples of test data are used. For
example, if two samples of different ability
are drawn from the population and item pa-
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rameters are estimated in each sample, the
congruence between the two sets of esti-
mates of each item parameter can be taken as
an indication of the degree to which inva-
riance holds. The degree of congruence can
be assessed by examining the correlation
between the two sets of estimates of each
item parameter or by studying the corres-
ponding scatterplot. Figure 3 shows a plot of
the difficulty values for 75 items based on
two samples from a population of examinees.
Suppose that the samples differed with res-
pect to ability. Since the difficulty estimates
based on the two samples lie on a straight li-
ne, with some scatter, it can be concluded that
the invariance property of item parameters
holds. Similar checks can be carried out on ot-
her item parameters in the model. Some de-
gree of scatter can be expected because of the
use of samples; a large amount of scatter
would indicate a lack of invariance that might
be caused either by model-data misfit or
poor item parameter estimation (which, un-
fortunately, are confounded).

The assessment of invariance described
above is clearly subjective but is used be-
cause no objective criteria are currently avai-
lable. Such investigations of the degree to
which invariance holds are, as seen above,
investigations of the fit of the model to the
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Figure 3.~Plot of 3P ltem Difficulty Values Based on Two Groups of Examinees

data, since invariance and model-data fit are
equivalent concepts (see, for example, Ham-
bleton, Swaminathan, & Rogers, 1991).

A similar example can be given to high-
light ability invariance (see Hambleton,
Swaminathan, & Rogers, 1991). Invariance
of item and ability parameters is a feature of
all item response models, one—, two—, and
three-parameter logistic models and others,
and can be obtained in the model parameter
estimates when the model fits the data, and
appropriate data collection designs are used.
The less complex IRT models typicaily re-
quire simpler designs. The parallel to fitting
linear and non-linear regression models is
obvious.

4. Item Discrimination

One of the strongest criticisms of the one-
parameter logistic model is that it does not
account for variability in item discriminating
power. As Traub (1983) so cogently states,

. . . these [Rasch] assumptions fly in
the face of common sense and a wealth of
empirical evidence accumulated over the
last 80 years...The fact that otherwise ac-
ceptable achievement items differ in the
degree to which they correlate with the
underlying trait has been observed so very
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often that we should expect this kind of

variation for any set of achievement items

we choose to study. (p. 64)

Table 1 contains the means, standard de-
viations, and low and high values of the item
biserial correlations on the nine subtests in
the Armed Services Vocational Aptitude Bat-
tery (ASVAB). This is an excellent example
of data for which an item discrimination pa-
rameter is needed to fit the test data.

Lord (1952) certainly was not prepared to
proceed with his IRT research program until
he could satisfactorily estimate both item
difficulty and discrimination (see Bejar,
1983, pp. 12-13). Many other researchers,
too, doubt the wisdom of discarding the item
discrimination parameter. Hundreds of ap-
plications of multi-parameter IRT models at-
test to this point.

Two common arguments for using an
item discrimination parameter are (1) you
don’t want to eliminate some of your best
items, and (2) a concern that the ability of in-
terest may be changed if non-fitting items
are removed from the test or item pool. Fi-
gures 4 and 5 highlight the first concern
using over 250 1977 NAEP Mathematics
Assessment items (Hambleton & Rogers,
1990). Items with low and high biserial co-
rrelations are not fit well by a one-parameter
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Table |
Item Biserial Correlations in the Armed Services Vocational Aptitude Battery Subtests'
(Total Calibration Sample, N = 3000 +)

Descriptive Content Area

Statistic GS AR WK PC Al SI MK MC El
Mean .56 .63 .66 .65 57 53 .64 53 49
Standard

Deviation 15 12 22 .14 17 15 A3 A3 13
Low Value 07 -.05 07 .19 .09 .08 25 .06 A1
High Value .82 .86 1.00 .99 .82 a7 93 19 .80
Number of

Items 228 245 258 230 240 228 230 230 226
' From a report by Prestwood, Vale, Massey, & Welsh (1985).

model (see Figure 4). The fits are conside-
rably better with the two-parameter model
and the curvilinear pattern vanishes (see Fi-
gure 5). Users of the one-parameter model
would be forced to eliminate some of the
best items in the test or simply proceed with
all of the items and a model that doesn’t fit
their data. But, in this latter case, the pre-
sence of the invariance property would de-

pend upon model robustness. Neither option
seems satisfactory. The choice of the better
fitting two-parameter model is the decision
many researchers would make.

Table 2 highlights the second concern.
The example is from a one— and three-pa-
rameter model analysis of the 75-item
Maryland Functional Reading Test. Item fit
statistics (above and below 1.0) are reported
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Figure 4.—Plot of 1P Average Absolute SRs Against Point-Biserial Correlations
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for each of five content areas measured in
the test. Items measuring «Main Idea» are
fitted less well than items measuring the
other four content areas. Deleting items in
the «main idea» content area would defi-
nitely distort the ability measured by the
full test.

In a recent paper, Masters (1988) alerted
the measurement field to the fact that not
all items with high discriminating power
are necessarily useful. This is an interes-
ting point, and it is possible that some
items riay be showing high discrimination
for inappropriate reasons. Proper empirical
and judgmental item bias investigations
can help reduce the problem of misinterpre-
ting high item discriminating power. In fact,
when item bias studies are conducted, cer-
tain items show up as discriminating in the
majority group and non-discriminating in the
minority group. The result is known as
non-uniform bias and can be detected with

two— and three-parameter model item bias
studies (see, for example, Hambleton &
Rogers, 1989). Also, results reported in the
Masters’ (1988) paper again highlight the
well-known point that valid test development
procedures require more than a simplistic
look at item statistics. Careful, thoughtful,
systematic test development work is needed
to insure that test scores are valid.

Some have argued that item discrimina-
tion might be modelled by multidimensional
IRT models. Still, the advantages and disad-
vantages of a one-parameter multidimensio-
nal Rasch model versus a one-dimensional,
two-parameter model would need to be
determined. Certainly, in 1994, the answer
seems easy. Two-parameter logistic models
can handle the variability in item discrimi-
nation well, and the application of any mul-
tidimensional model, even a simple multidi-
mensional model, is fraught with problems
at this time (e.g., parameter estimation, in-
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Figure 5.-Plot of 2P Average Absolute SRs Against Point-Biserial Correlations
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Table 2
Association Between Absolute-Valued Standardized Residuals (SRs)
and Item Content on the Maryland Functional Reading Test'

One-Parameter

% of Standardized Residuals’

Three-Parameter

Content Number ISR|< 1 ISR|>1 ISR | <! ISR|>1
Category of Items (n=16) (n=59) (n =56) (n=19)
Following

Directions 17 41.2% 58.8% 88.2% 11.8%
Locating

Information 17 235 76.5 82.4 17.6
Main

Idea 12 0.0 100.0 41.7 58.3
Using

Details 17 11.8 88.2 76.5 23.5
Understanding

Forms 12 25.0 75.0 75.0 25.0

' From a paper by Hambleton, Murray, and Williams (1983).
> Twelve (absolute-valued) standardized residuals (SRs) were available on each test item. The average of
these 12 SRs for an item was used in the calculations above.

terpretations). Some recent research by
Glas (1992) is responsive to concerns about
this point. His solution involves fitting a
multi-dimensional Rasch model in which the
items measuring each dimension in the solu-
tion space have their own level of discrimi-
nating power. The model fitting begins by
first forming subtests of items with similar
discriminating powers. But the procedure is
very complicated, not ready for wide use at
this time, and, interestingly, requires multi-
ple item discrimination values, one for each
subtest.

Finally, recently measurement with the
Rasch model has been enriched by contribu-
tions from several Dutch researchers who
have extended the Rasch model by adding an
item discrimination parameter (Verstralen &
Verhelst, 1991a, 1991b). What makes this
work novel is that they have developed a
method for using «imputed values.» They
found that the addition of an item discrimi-
nation parameter improved model fit, pre-
served the property of specific objectivity,
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while not complicating model parameter es-
timation. The important point at this junctu-
re is that item discrimination was found to be
a useful addition to the Rasch model. The
topic of model parameter estimation will be
considered in Section 6.

5.Pseudo-Guessing Parameter

The inclusion of a pseudo-guessing para-
meter in an IRT model has caused conside-
rable controversy. For one, as Mellenbergh
(1994) has noted, the three-parameter
logistic model does not conveniently fit
into a general framework of psychometric
models. Another problem has to do with the
psychological interpretation of the parame-
ter. And, finally, parameter estimation has
been difficult.

With respect to interpretation, the para-
meter is not strictly a «guessing parameter.»
Lord (1974) determined this in his evaluati-
ve study of item parameter estimates from
LOGIST. He coined the term «pseudo-
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chance level parameter.» For others, the
parameter is simply needed to account for
the non-zero item performance of low ability
candidates. But numerous data analyses (see,
for example, Hambleton & Cook, 1983;
Hambleton & Rogers, 1990; Hambleton,
Swaminathan, & Rogers, 1991) have high-
lighted the utility of the c-parameter in im-
proving model fit. Hambleton, Swaminat-
han, and Rogers fitted the one-parameter and
three-parameter logistic models to NAEP
math items and then considered the (absolu-
te-valued) standardized residuals (i.e., misfit
statistics) for items sorted by format (open-
ended and multiple-choice) and difficulty.
The results, report in Table 3, are clear and
compelling. When the fit is good, mean resi-
duals around a value of .80 are expected.
The findings are that the three-parameter
model generally fits the data well and better
than the one-parameter model for the four
combinations of item format and level of
difficulty. The one-parameter model fit is
especially poor when guessing arises with
the hard multiple-choice items.

With respect to estimation, Thissen and
Wainer (1982) noted very large standard
errors for the c-parameter estimates.

Fortunately, proper choice of examinee

sample and/or the use of Bayesian priors in
the estimation procedure (for example, such
priors are used in BILOG) can be very
helpful in reducing parameter estimation
errors (see, for example, de Gruijter, 1984;
Swaminathan & Gifford, 1986). Researchers
have often settled for a common c¢-parameter
value across items. This model is sometimes
called a modified three-parameter model,
and has resulted in improved model fit over
the two-parameter model.

An interesting problem arises with small
sample sizes. Do you fit a model with a sin-
gle difficulty parameter? Lord (1983) sho-
wed that when samples sizes are less than
200, a Rasch model with equal scoring
weights is better than a two-parameter mo-
del with relatively poor estimates of the item
discrimination parameters. On the other
hand, in a very nice simulation pertaining to
optimal item selection in test development,
de Gruijter (1986a) showed that even with
small samples, if guessing occurs, a model
that handles guessing

P(6) =c +(1—c)[1+ePa®-b)]"

is preferable to the Rasch model. The poor
estimation of c-parameters in small samples

Table 3
Analysis of the (Absolute-Valued) Standardized Residuals'
Item Number 1-p Results 3-p Results
Difficulty Item of _
Level Format Items SD X SD
Hard
(p<.5) MC 70 2.73 1.55 .82 23
OE 54 1.64 .81 .86 28
Easy
(p>.5) MC 70 1.79 1.10 .90 .64
OE 66 1.67 72 .97 .38
' Math Booklets No. 1 and 2, 260 Items, 9- and 13-Year-Olds, 1977-78
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is addressed in two ways: (1) only a single c-
parameter is estimated, and (2) a Bayesian
prior on the c-parameter estimation process
can be used.

6. IRT Computer Software Packages

Solving hundreds and often thousands of
non-linear equations simultaneously is a
complex numerical analysis problem. This is
the problem that BILOG (Mislevy & Bock,
1986), LOGIST (Wingersky, Barton, &
Lord, 1982), MULTILOG (Thissen, 1986),
and MicroCAT (Assessment Systems Cor-
poration, 1988) have been designed to ad-
dress. In solving these equations to obtain
model parameter estimates and standard
errors, it is common for numerical analysts
to place constraints on some or all of the pa-
rameters, to incorporate prior beliefs about
the parameters (e.g., the c-parameter cannot
be less than zero, and is unlikely to exceed
.30), and to use sensible initial values of the
parameters (see, for example, Mislevy &
Stocking, 1989).

Several facts about these computer pro-
grams are not disputed. First, they take con-
siderably more time to provide two— and
three-parameter model estimates than pro-
grams providing Rasch model estimates,
such as BIGSCALE (Wright, Schultz, &
Linacre, 1989) and RIDA (Glas, 1990).
Second, LOGIST, BILOG, and others so-
metimes encounter convergence problems
with some items and/or persons (see, for
example, Yen, Burket, & Sykes, 1991).
These events will occur with more frequency
when tests are short, and examinee sample
sizes are small, though some estimation
methods, such as Bayesian, seem to reduce
the number of problems (Swaminathan &
Gifford, 1985, 1986). That the problems of
convergence, large standard errors, and so
on, are generally known to users is due to
the substantial amount of research that has
been conducted.

Considerably less technical information is
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available on BICAL, BIGSCALE, MI-
CROSCALE, and other software packages
which are used to obtain Rasch model para-
meter estimates. Even in this considerably
simpler case, bias in the unconditional ma-
ximum likelihood parameter estimates has
been observed (de Gruijter, 1986b, 1990;
Divgi, 1986; van den Wollenberg, Wierda,
& Jansen, 1988) and the goodness of fit
statistics associated with the Rasch model
have been challenged (see, for example,
Divgi, 1986; Rogers & Hattie, 1987). Ro-
gers and Hattie concluded, «the results re-
ported in this study suggest that the mean-
square residual and total-t person and item
fit statistics will contribute very little to an
investigation of one-parameter model fit
and, indeed, if relied on solely, will provi-
de incorrect information about the appro-
priateness of the model» (p. 56).

Divgi (1986) reported that the percent of
items misfitting the Rasch model in the fa-
mous Anchor Test Study of the middle
1970s (Loret, Seder, Bianchini, & Vale,
1974) increased from 17 %, as reported
with the improper statistical tests, to 68 %
with what he claimed were the correct sta-
tistical tests. Unfortunately, however, the
impression remains among many practitio-
ners (based upon the Rentz & Rentz [1979]
study) that the Rasch model fits all types of
data well. To quote Divgi (1986, p. 284):
«It seems safe to conclude that the studies
that found the Rasch model satisfactory for
multiple-choice tests did so because their
methods of analysis were not powerful
enough.» Fortunately, improved statistical
tests for the Rasch model appear to be on
the way (Smith, 1988, 1991).

Our point is not to argue that the two stu-
dies by Rogers and Hattie and Divgi invali-
date most of the conclusions about Rasch
model fit using BICAL. In fact, papers by
Henning (1989) and Smith (1988, 1991)
have been helpful in understanding and
explaining some of the technical problems
with various goodness-of-fit measures.
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Rather, the point is that the Rasch model
estimation and goodness-of-fit procedures,
particularly as implemented, in BICAL and
its successors, are not without controversy
themselves. Rasch model research perhaps
would be enhanced if more up-to-date infor-
mation were available about the main pro-
grams in use in the U.S. More documenta-
tion is available on several programs in use
in Europe (see, for example, Glas, 1990;
Verhelst et al., 1991).

In a rapidly developing field such as IRT,
it is not surprising to see constant updating
of computer software packages to respond to
new requests (e.g., standard errors), to tech-
nical advances (e.g., Bayesian priors), and to
correct errors (e.g., goodness of fit statistics).
In fact, such developments are constructive
and necessary, but these developments make
the task of providing timely comments on
software packages difficult. Perhaps it is
sufficient to report that the main software
packages (LOGIST, BILOG, MULTILOG)
for obtaining parameters for the two-para-
meter and three-parameter logistic models
and the graded response model work quite
well under reasonable conditions of test
length and sample size (see, for example,
Mislevy & Stocking, 1989; Reise & Yu,
1990; Yen, 1987). Precise numbers needed
are impossible to specify because they inte-
ract with desired degree of parameter preci-
sion, estimation procedures, and examinee
ability distribution. For example, a smaller
heterogeneous sample is generally prefera-
ble to a larger, more homogeneous sample in
item parameter estimation with the two- and
three-parameter models.

What does it mean to say that a software
program works? One requirement is that the
estimation process recover known model
parameters in simulation studies without
bias or standard errors that are inconsistent
with the sample sizes. In the most compre-
hensive study to date, Mislevy and Stocking
(1989), have provided the clearest study on
the relative strengths and weaknesses of
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LOGIST and BILOG and more generally
technical problems that arise with joint and
marginal maximum likelihood estimation
and Bayesian estimation, and how they are
addressed in the programs. Basically, the
recovery of true ability and item parameters
was done well by both programs with mo-
derately long tests (n = 45) and large sample
sizes. LOGIST was not very successful with
a short test (n = 15), a finding which has
been reported at other times also (see, for
example, Lord, 1974). BILOG, with its use
of Bayesian priors is more successful than
LOGIST with the shorter test lengths. Other
comparative studies by Yen (1987), Hulin,
Lissak, and Drasgow (1982), and, more
recently, Wingersky (1992), have shown the
utility of the LOGIST program under many
conditions that occur in practice. Still, it
must be said that there is plenty of room for
improvement in parameter estimation, and
neither program, but especially LOGIST, is
intended for the IRT newcomer or for small-
scale testing applications.

Mislevy and Stocking (1989) have sug-
gested that many of the problems observed
in LOGIST and BILOG are common to ot-
her computer programs as well that attempt
to solve many non-linear equations simul-
taneously. de Gruijter (1990), Divgi
(1986), and others, for example, have no-
ted that unconditional parameter estimation
methods popular with the Rasch model are
biased.

Yen, Burket, and Sykes (1991) have
recently addressed the problem of non-unique
solutions to the likelihood equations for the
three-parameter logistic model and offered
ways in which the problem can be addressed
in practice. Some researchers will no doubt
point again to flaws in the three-parameter
model. Recall, though, as noted by Yen et al.
(1991), that the problems are due to correct
guessing on the part of some examinees,
not due to the three-parameter model. Use
of the Rasch model will eliminate the mul-
tiple maxima problem but can worsen mo-
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del fit. Choose your poison! Fortunately,
there are possible ways to identify and
handle multiple maxima when they occur.
And, other IRT models which provide more
psychologically satistfying responses to the
guessing problem are under development
(see, for example, Goldstein & Wood,
1989).

Some, such as Wright (1984), have ar-
gued that the technical problems described
above are insurmountable and are best over-
come with the use of a «better behaved»
Rasch model. But two points might be noted.
First, these problems are being identified be-
cause of the careful and serious way in
which researchers working with these multi-
parameter models and procedures are proce-
eding. Problems such as the handling of
omits and «not reached» items which have
seriously concerned Lord since as early as
1952 or the serious problems of «item order»
and «context effects» on item parameter es-
timation (Yen, 1980; Zwick, 1991) are either
unknown to many users of the Rasch model
or unappreciated. These problems and many
others are every bit as serious for the validity
of Rasch model applications as they are for
applications of the multi-parameter models.
Second, for many psychometricians, the
goal is to find IRT models or other models
that can be used to represent their data.
Simple but non-fitting models are of little
interest.

In sum, many research studies (Harwell
& Janosky, 1991; Hulin, Lissak, &
Drasgow, 1982; Lord, 1974; Ree, 1979;
Skaggs & Stevenson, 1989; Swaminathan
& Gifford, 1983; Vale & Gialluca, 1988;
and others) have shown that logistic mo-
dels can recover the true parameters in si-
mulation studies when proper estimation
designs (i.e., suitable samples in size and
location on the ability scale, test lengths,
and priors) are used. Generally, item diffi-
culty parameters can be properly estimated
with smaller sample sizes than other item
parameters.
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7. Successful Applications of Multi-
Parameter IRT Models

A complete accounting of the successful
applications of multi-parameter IRT models
is beyond the scope of this paper. This topic
itself could serve as the basis for a long
paper. Readers are referred to Hambleton
and Swaminathan (1985), Hambleton,
Swaminathan, and Rogers (1991), Lord
(1980), and the plethora of articles in the
Journal of Educational Measurement, Ap-
plied Psychological Measurement, and
Applied Measurement in Education, and
other measurement journals.

In view of the serious doubts expressed
by Wright (1984) about the utility of multi-
parameter IRT models, it seems only neces-
sary to highlight a few prominent examples
to counter his objections. Perhaps the most
visible IRT multi-parameter application for
assessments of interest to policy makers is
the National Assessment of Educational Pro-
gress. Since 1984, scale construction and
score reporting have been done with the
three-parameter logistic model. This year,
too, multi-parameter model extensions to
handle polychotomously scored items will
be introduced. CTB/McGraw-Hill/Macmi-
llan has been using the three-parameter
logistic model in its test development, scale
construction, and score reporting of standar-
dized achievement tests. Perhaps the «cadi-
Ilac» of state assessment systems was in
California and this system, until it was dis-
continued last year, used multi-parameter
IRT models and carefully monitored for
technical quality by Darrell Bock from the
University of Chicago. The Law School Ad-
missions Test, the Graduate Management
Admissions Test, the Scholastic Aptitude
Test, the Graduate Record Exam, and the
Tests of English as a Foreign Language are
a number of other high profile, national or
international tests that use multi-parameter
IRT models in test design, item bias analyses,
score equating, etc.
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8. Shortcomings in the Arguments to
Support the Rasch Model

Controversy has followed the Rasch mo-
del since its introduction to U.S. measure-
ment specialists in a paper by Wright (1968).
Goldstein (1981), Whitely and Dawis (1974),
Divgi (1986), McDonald (1985, 1989), are
some of the best known measurement
experts to challenge the validity of the Rasch
model. Shortcomings in the arguments
advanced by Wright (1968, 1977, 1984) for
the Rasch model include:

1. Placing too much importance on suffi-
cient statistics;

2. Failing to satisfactorily account for va-
riability in item discriminating power;

- 3. Failing to satisfactorily account for the
non-zero item performance of low-perfor-
ming examinees;

4. Failing to successfully attend to pro-
blems such as «omits,» «not reached,» item
context effects, item order effects, etc.,
which impact on model utility and validity;

5. Providing incorrect results on model
fit because of the use of inappropriate
statistics.

6. Failing to acknowledge (or recognize)
that the properties of item and ability inva-
riance are characteristics of all IRT models
which fit the data to which they are applied;

7. Recommending the deletion of misfit-
ting items (rather than adding model para-
meters) which can distort the trait underlying
the test;

8. Failing to recognize serious problems
with the Rasch model in important applica-
tions such as vertical equating (see, for
example, Schulz, Perlman, Rice, & Wright,
1992); and

9. Overstating problems with current
multi-parameter IRT software packages.
Each of the nine points has been addressed
directly or indirectly in one or more of the
previous sections. It is important to add, ho-
wever, that, though there are many shortco-
mings in the arguments used to support the
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Rasch model, the model (and extensions)
itself has an important role to play in many
testing applications. A review of Wilson
(1992) and the JEM, APM, and AME, to
name just four major references, will turn up
many important technical advances and ap-
plications of the Rasch model, including use
in (1) national standardized achievement
tests, (2) item banking projects, and (3)
many state testing and credentialing exam
programs. Perhaps the best argument to sup-
port its use is that it sometimes provides a
close fit to actual test data. Also, the model
may have special utility in situations where
samples are modest in size and the need for
high precision in ability estimates is not gre-
at (such as in some school applications).

9. Promising Future of IRT Models

While IRT provides solutions to many
testing problems that previously were unsol-
ved or solved in a less than satisfactory way,
it is not a magic wand which can be waved
to overcome deficiencies such as poorly
written test items and poor test designs. In
the hands of careful test developers, howe-
ver, IRT models, the Rasch model and mul-
ti-parameter models, and IRT methods can
become powerful tools in the design and
construction of sound educational and psy-
chological instruments, and in reporting and
interpreting test results. But it is highly unli-
kely that any single family of IRT models
will be able to meet the challenges and
demands on measurement practices in the
coming decade.

Research on IRT models and their appli-
cations is being carried out at a phenomenal
rate (see Thissen & Steinberg, 1986, and
Mellenbergh, 1994, for taxonomies of mo-
dels; and van der Linden & Hambleton, in
press). Entire issues of several journals have
been devoted to developments in IRT. For
the future, two directions for research appear
to be especially important: polytomous
unidimensional response models and both
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dichotomous and polytomous multidimen-
sional response models. Research in both
directions is well under way (Masters &
Wright, 1984; McDonald, 1989; van der
Linden & Hambleton, in press). With the
growing interest in «authentic measurement,»
special attention must be given to IRT mo-
dels that can handle polytomous scoring,
since authentic measurement is linked to
performance testing and non-dichotomous
scoring of examinee performance.

Multidimensional IRT models were intro-
duced originally by Lord and Novick (1968),
Samejima (1974), and, more recently, by
Embretson (1984), Fischer and Seliger (in
press), and McDonald (1989). Multidimen-
sional models offer the prospect of better fit-
ting current test data and providing multidi-
mensional representations of both items and
examinee abilities. It remains to be seen
whether parameters for these multidimen-
sional models can be properly estimated,
and whether multidimensional representa-
tions of items and examinees are useful to
practitioners.

Goldstein and Wood (1989) have argued
for more IRT model-building in the future,
but feel that more attention should be given
to placing IRT models within an explicit
linear modeling framework. Advantages,
according to Goldstein and Wood, include
model parameters that are simpler to unders-
tand, easier to estimate, and that have well-
known statistical properties.

Three other areas are likely to draw spe-
cial attention from educators and psycholo-
gists in the coming years. First, large-scale
state, national, and international assessments
are attracting considerable attention, and will
continue to do so for the foreseeable future
(see, for example, the Third International
Mathematics and Science Study involving
over 60 countries). Iltem response models are
being used at the all-important reporting
stages in these assessments. It will be inte-
resting to see what technical controversies
arise from this type of application (see, for
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example, Zwick, 1991). One feature that
plays an important role in reporting is the
ICC. Are ICCs invariant to the nature and
amounts of instruction? The assumption is
that ICCs are invariant, but substantiaily mo-
re research is needed to establish this point.
Second, cognitive psychologists such as
Embretson (1984) are interested in using
IRT models to link examinee task perfor-
mance to their ability through complex
models that attempt to estimate parameters
for the cognitive components that are needed
to complete the tasks. This line of research
is also consistent with Goldstein and Wood’s
goal to see the construction of more mea-
ningful psychological models to help ex-
plain examinee test performance. See, for
example, recent work by Mislevy and
Verhelst (1990), and Sheehan and Mislevy
(1990), which is along these general lines.
Third, educators and psychologists are
making the argument for considerably more
use of test scores than simply rank ordering
of examinees on their abilities or determi-
ning whether they have met a particular
achievement level or standard. Diagnostic
information is becoming increasingly im-
portant to users of test scores. Inappro-
priateness measurement, developed by M.
Levine and F. Drasgow (see, for example,
Drasgow, Levine, & McLaughlin, 1987),
which utilizes IRT models, provides a fra-
mework for identifying aberrant responses
of examinees and special groups of exa-
minees on individual and groups of items.
Such information can be helpful in suc-
cessful diagnostic work. More use of IRT
models in providing diagnostic information
can be anticipated in the coming years.

Conclusions

There has been a considerable amount
of debate in the measurement literature
about the merits of various IRT models, es-
timation procedures and designs, and the
specific steps for equating tests, identifying
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DIF, and constructing tests. There are even
researchers who have some serious reser-
vations about the whole IRT direction in
measurement (see, for example, Hoover,
1992).

In 1994, it is nonsensical to argue that
the Rasch model (and its extensions) are
the only models providing a sound techni-
cal basis for constructing tests and evalua-
ting test scores. The testing field has many
outstanding examples of successful appli-
cations of multi-parameter IRT models.
And, technical advances on many fronts
(see, for example, Suen & Lee, 1992) will
make future applications even more suc-
cessful. The argument in this paper is that
there is room for many IRT models, but
only models which fit data, and have para-
meters which can be estimated well will be
of interest. One important example of mo-
del fit was presented earlier in the paper
and the results were poor for the one-para-
meter model. But, our point was not to re-
ject the Rasch model for every application.
Our only purpose was to highlight the ne-
ed for, and the acceptability of, other mo-
dels. In fact, we laud the excellent work of
many one-parameter model researchers and
acknowledge the role their research has
played in the technical foundations of IRT.
We note, too, in passing, that many of the
improvements in the Rasch model methods
and procedures have been due to construc-
tive suggestions from IRT researchers not
exclusively interested in the Rasch model.
These are constructive actions on the part
of many researchers to make IRT models
more useful in practice.

In a way, the long-standing debate bet-
ween one-parameter and three-parameter
model advocates has been counter-produc-
tive. There is a need for both psychometric
models. In fact, there is substantial eviden-
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ce to suggest that both models have been
used very successfully in many types of
testing applications. On the negative side,
the focus of attention on the one— and th-
ree-parameter logistic models has meant
that there is less familiarity on the part of
practitioners with many new promising di-
rections for psychometric model-building.
Goldstein and Wood (1989), Garcia-Perez
and Frary (1991), Mellenbergh (1994), and
McDonald (1982, 1989) have all suggested
new models or classes of models and, of
course, extensions of logistic models to
handle polychotomous as well as multi-di-
mensional data are well under way (see, for
example, Embretson, in press; Fischer&Se-
liger, in pres  eckase, in press).

The main points of this paper are that
both the Rasch model and the more general
(i.e., multi-parameter) logistic models have
important roles to play in the field of testing.
But model fit is essential, and it is far better
to find models that fit the test data than to
discard data simply to fit the Rasch model.
Educational and psychological testing prac-
tices are changing. New item formats and
scoring schema are being introduced to me-
asure higher-order thinking skills. These
new measures should not be narrowed to
enable a simple (or even extended) Rasch
model to fit the resulting data. Curriculum
specialists would be rightly shocked. At the
same time, to argue that variations in item
discrimination is really «multidimensiona-
lity» in the test data and should be handled
by multidimensional Rasch models is to dis-
regard 80 years of measurement experience.
To advocate the use of multidimensional
IRT models that are still in their early deve-
lopmental stage seems highly inappropriate
and fails to recognize the success of unidi-
mensional multi-parameter models in fitting
educational and psychological data.
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